Unraveling the viral dark matter through viral metagenomics.

Front Immunol

Diversigen, Inc., Houston, TX, United States.

Published: October 2022

Viruses are part of the microbiome and have essential roles in immunology, evolution, biogeochemical cycles, health, and disease progression. Viruses influence a wide variety of systems and processes, and the continued discovery of novel viruses is anticipated to reveal new mechanisms influencing the biology of diverse environments. While the identity and roles of viruses continue to be discovered and understood through viral metagenomics, most of the sequences in virome datasets cannot be attributed to known viruses or may be only distantly related to species already described in public sequence databases, at best. Such viruses are known as the viral dark matter. Ongoing discoveries from the viral dark matter have provided insights into novel viruses from a variety of environments, as well as their potential in immunological processes, virus evolution, health, disease, therapeutics, and surveillance. Increased understanding of the viral dark matter will continue with a combination of cultivation, microscopy, sequencing, and bioinformatic efforts, which are discussed in the present review.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523745PMC
http://dx.doi.org/10.3389/fimmu.2022.1005107DOI Listing

Publication Analysis

Top Keywords

viral dark
16
dark matter
16
viral metagenomics
8
health disease
8
novel viruses
8
viruses
7
viral
5
unraveling viral
4
dark
4
matter
4

Similar Publications

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

The mammalian gut microbiome is a dense and diverse community of microorganisms that reside in the distal gastrointestinal tract. In recent decades, the bacterial members of the gut microbiome have been the subject of intense research. Less well studied is the large community of bacteriophages that reside in the gut, which number in the billions of viral particles per gram of feces, and consist of considerable unknown viral "dark matter.

View Article and Find Full Text PDF

The recent COVID-19 pandemic has set a strong quest for advanced understanding of possible tracks in abating and eliminating viral infections. In the view that several families of "pristine" small oxide nanoparticles (NPs) have demonstrated viricidal activity against SARS-CoV-2, we studied the effect of two NPs, with presumably different reactivity, on two viruses aiming to evaluate two "primary suspect" routes of their antiviral activity, either specific blocking of surface proteins or causing membrane disruption. The chosen NPs were non-photoactive 3.

View Article and Find Full Text PDF

Typhoid Fever as a Cause of Liver Failure in the United States: A Case Report.

Case Rep Gastrointest Med

January 2025

Department of Infectious Diseases, Maimonides Medical Center, Brooklyn, New York 11219, USA.

Typhoid fever is a multisystemic illness caused by and , transmitted fecal orally through contaminated water and food. It is a rare diagnosis in the US, with most cases reported in returning travelers. Hepatitis and cholestasis are rare sequelae of infection.

View Article and Find Full Text PDF

Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!