Novel Ambient Oxidation Trends in Fingerprint Aging Discovered by Kendrick Mass Defect Analysis.

ACS Cent Sci

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.

Published: September 2022

A Kendrick mass defect (KMD) plot is an efficient way to disperse complex high-resolution mass spectral data in a visually informative two-dimensional format which allows for the rapid assignment of compound classes that differ by heteroatom content and/or unsaturation. Fingerprint lipid oxidation has the potential to be used to estimate the time since deposition of a fingerprint, but the mass spectra become extremely complex as the lipids degrade. We apply KMD plot analysis for the first time to sebaceous fingerprints aged for 0-7 days to characterize lipid degradation processes analyzed by MALDI-MS. In addition to the ambient ozonolysis of fingerprint lipids previously reported, we observed unique spectral features associated with epoxides and medium chain fatty acid degradation products that are correlated with fingerprint age. We propose an ambient epoxidation mechanism via a peroxyl radical intermediate and the prevalence of omega-10 fatty acyl chains in fingerprint lipids to explain the features observed by the KMD plot analysis. Our hypotheses are supported by an aging experiment performed in a sparse ozone condition and on-surface Paternò-Büchi reaction. A comprehensive understanding of fingerprint degradation processes, afforded by the KMD plots, provides crucial insights for considering which ions to monitor and which to avoid, when creating a robust model for time since deposition of fingerprints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523776PMC
http://dx.doi.org/10.1021/acscentsci.2c00408DOI Listing

Publication Analysis

Top Keywords

kmd plot
12
kendrick mass
8
mass defect
8
time deposition
8
plot analysis
8
degradation processes
8
fingerprint lipids
8
fingerprint
7
novel ambient
4
ambient oxidation
4

Similar Publications

Polyglycolic acid (PGA) is a biologically friendly material with a wide range of applications. The production of dimethyl oxalate using coal-based syngas and the hydrogenation of dimethyl oxalate can produce the polymerization raw material of PGA, glycolide, which requires a methyl glycolate polymerization and depolymerization process. The intermediate products of the production process were analyzed using gas chromatogram-mass spectrometry (GC-MS) and Orbitrap mass spectrometry (Orbitrap MS), which revealed the presence of cyclic and linear PGAs with different capped ends.

View Article and Find Full Text PDF

Analysis of the heavy fractions in crude oil has been important in petroleum industries. It is well known that heavy fractions such as vacuum gas oils (VGOs) include heteroatoms, of which sulfur and nitrogen are often characterized in many cases. We conducted research regarding the molecular species analysis of VGOs.

View Article and Find Full Text PDF

This study introduces a novel method that utilizes evolved gas analysis with time-of-flight mass spectrometry (EGA-TOFMS) coupled with principal component analysis (PCA) and Kendrick mass defect (KMD) analysis, called EGA-PCA-KMD, to analyze complex structural changes in polymer materials during thermo-oxidative degradation. While EGA-TOFMS captures exact mass data related to the degradation components in the temperature-dependent mass spectra of the evolved products, numerous high-resolution mass spectra with large amounts of ion signals and varying intensities provide challenges for interpretation. To address this, we employed mathematical decomposition through PCA to selectively extract information about the ion series specific to the products that evolved from the degradation components.

View Article and Find Full Text PDF

Lipopolysaccharides (LPSs) are a hallmark virulence factor of Gram-negative bacteria. They are complex, structurally heterogeneous mixtures due to variations in number, type, and position of their simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging.

View Article and Find Full Text PDF

High resolution mass spectrometry (HRMS)-based non-target analysis coupled with ion mobility spectrometry (IMS) is gaining momentum due to its ability to provide complementary information which can be useful in the identification of unknown organic chemicals in support of efforts in unraveling the complexity of the chemical exposome. The chemical exposome in the marine environment, though not as well studied as its freshwater counterparts, is not foreign to chemical diversity specially when it comes to potentially bioaccumulative and bioactive polyhalogenated organic contaminants and natural products. In this work we present in detail how we utilized IMS-HRMS coupled with gas chromatographic separation and atmospheric pressure chemical ionization (APCI) to annotate polyhalogenated organic chemicals in French bivalves collected from 25 sites along the French coasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!