A series of 27 new quinoxaline derivatives (-alkyl-[2-(3-phenyl-quinoxalin-2-ylsulfanyl)]acetamides, methyl-2-[2-(3-phenylquinoxalin-2-ylsulfanyl)-acetylamino]alkanoates, and their corresponding dipeptides) were prepared from 3-phenylquinoxaline-2(1)-thione based on the chemoselective reaction with soft electrophiles. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to study the efficacy of 27 compounds on cancer cell viability and proliferation. A total of 13 compounds (-, , , , , , , , , , and ) showed inhibitory action on HCT-116 cancer cells and 15 compounds (-, , , , , , , , , , , , and ) showed activity on MCF-7 cancer cells, with compound exhibiting the highest inhibitory action (IC 1.52 and 2 μg/mL, respectively) on both cell lines. The molecular modeling studies on the human thymidylate synthase (hTS) homodimer interface showed that these compounds are good binders and could selectively inhibit the enzyme by stabilizing its inactive conformation. The study also identified key residues for homodimer binding, which could be used for further optimization and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520703 | PMC |
http://dx.doi.org/10.1021/acsomega.2c03522 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against hydrogen peroxide (HO)-induced oxidative damage in the isolated bovine retina and (b) to evaluate the role of endogenously biosynthesized hydrogen sulfide (HS) in the inhibitory actions of cannabinoids on the oxidative stress in the bovine retina. Isolated neural retinas from cows were exposed to oxidative damage using HO (100 µM) for 10 min.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Kilis 7 Aralik University, 79000 Kilis, Türkiye.
: The genus is renowned for its diverse bioactive potential, yet the chemical composition and biological properties of remain inadequately explored. This study aimed to investigate the chemical profile, antioxidant capacity, and enzyme inhibitory activities of methanol extracts from various plant parts of . : Methanol extracts were obtained from leaves, stems, flowers, roots, and aerial portions of .
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
DPP4 is an enzyme with multiple natural substrates and probable involvement in various mechanisms. It constitutes a drug target for the treatment of diabetes II, although, also related to other disorders. While a number of drugs with competitive inhibitory action and covalent binding capacity are available, undesired side effects exist partly attributed to drug kinetics, and research for finding novel, potent, and safer compounds continues.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India.
: The global AIDS pandemic highlights the urgent need for novel antiretroviral therapies (ART). In our previous work, Zinc C295 was identified as a potent HIV-1 integrase strand transfer (ST) inhibitor. This study explores its potential to also inhibit 3'-processing (3'P), thereby establishing its dual-targeting capability.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!