Heat production during fermentation is undesirable. It can affect the growth of biomass, sporulation, products formation and the scaling-up. Physico-chemical properties of substrates influence heat and mass transfer in Solid State Fermentation. Heat is chemically produced into substrates without micro-organism to allow better reproducibility. A 2 fractional factorial design is chosen to study the influence of four physicochemical parameters on heat transfer: Granulometry, Bulk Density, Carr Index (compressibility index) and Water Absorption Capacity. Results show that the two main physicochemical parameters which influence heat transfer are Granulometry and Carr Index. High Granulometry and low Carr Index have influence on maximum temperature reached during the test, warm-up speed and cooling speed. These two parameters allow efficient air flow through the substrate bed with large interparticle spaces enhancing exchange surface between air and particles. A substrate with these characteristics facilitates heat transfers in forced-aerated reactors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516386PMC
http://dx.doi.org/10.1016/j.btre.2022.e00764DOI Listing

Publication Analysis

Top Keywords

heat transfer
12
physicochemical parameters
12
solid state
8
state fermentation
8
influence heat
8
transfer granulometry
8
heat
7
novel method
4
method assess
4
assess heat
4

Similar Publications

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.

View Article and Find Full Text PDF

Computational Model of the Effective Thermal Conductivity of a Bundle of Round Steel Bars.

Materials (Basel)

January 2025

Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.

During the heat treatment of round steel bars, a heated charge in the form of a cylindrically formed bundle is placed in a furnace. This type of charge is a porous granular medium in which a complex heat flow occurs during heating. The following heat transfer mechanisms occur simultaneously in this medium: conduction in bars, conduction within the gas, thermal radiation between the surfaces of the bars, and contact conduction across the joints between the adjacent bars.

View Article and Find Full Text PDF

C-UHTC is an ideal aerospace material because of its exceptional properties, but its machinability is facing great challenges. Electrical discharge machining (EDM) offers a potential solution, but its removal mechanism remains unclear, lacking reliable prediction tools to guide the actual production. This paper deeply explores the EDM removal mechanism of C-ZrB-SiC through single-pulse experiments, high-speed camera observations, and thermal-fluid coupling simulations, revealing key processes like heat transfer, phase transformation, molten pool dynamics, crater formation, and reinforcing phase effects.

View Article and Find Full Text PDF

This paper presents a comprehensive numerical investigation to simulate heat transfer and residual stress formation of Ti-6Al-4V alloy during the Laser Powder Bed Fusion process, using a finite element model (FEM). The FEM was developed with a focus on the effects of key process parameters, including laser scanning velocity, laser power, hatch space, and scanning pattern in single-layer scanning. The model was validated against experimental data, demonstrating good agreement in terms of temperature profiles and melt pool dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!