The prevalence of obesity and metabolic diseases continues to rise, which has led to an increased interest in studying adipose tissue to elucidate underlying disease mechanisms. The use of genetic mouse models has been critical for understanding the role of specific genes for adipose tissue function and the tissue's impact on other organs. However, mouse adipose tissue displays key differences to human fat, which has led, in some cases, to the emergence of some confounding concepts in the adipose field. Such differences include the depot-specific characteristics of visceral and subcutaneous fat, and divergences in thermogenic fat phenotype between the species. Adipose tissue characteristics may therefore not always be directly compared between species, which is important to consider when setting up new studies or interpreting results. This mini review outlines our current knowledge about the cell biological differences between human and mouse adipocytes and fat depots, highlighting some examples where inadequate knowledge of species-specific differences can lead to confounding results, and presenting plausible anatomic explanations that may underlie the differences. The article thus provides critical insights and guidance for researchers working primarily with only human or mouse fat tissue, and may contribute to new ideas or concepts in the important and evolving field of adipose biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521710 | PMC |
http://dx.doi.org/10.3389/fcell.2022.1003118 | DOI Listing |
Lipids Health Dis
January 2025
Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Shandong, 250012, People's Republic of China.
Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.
Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.
BMC Endocr Disord
January 2025
Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Background: Menopause is a significant phase in women's health, in which the incidence of obstructive sleep apnea (OSA) is significantly increased. Body fat distribution changes with age and hormone levels in postmenopausal women, but the extent to which changes in body fat distribution affect the occurrence of OSA is unclear.
Methods: This research performed a cross-sectional analysis utilizing data from the 2015-2016 National Health and Nutrition Examination Survey (NHANES).
Abdom Radiol (NY)
January 2025
Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
Objectives: To develop a nomogram based on the radiomics features of tumour and perigastric adipose tissue adjacent to the tumor in dual-layer spectral detector computed tomography (DLCT) for lymph node metastasis (LNM) prediction in gastric cancer (GC).
Methods: A retrospective analysis was conducted on 175 patients with gastric adenocarcinoma. They were divided into training cohort (n = 125) and validation cohort (n = 50).
Exp Physiol
January 2025
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.
View Article and Find Full Text PDFNutrients
January 2025
Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy.
Background: Migraine, a prevalent neurovascular disorder, affects millions globally and is associated with significant morbidity. Emerging evidence suggests a crucial role of the gut microbiota and adipose tissue in the modulation of migraine pathophysiology, particularly through mechanisms involving neuroinflammation and metabolic regulation.
Material And Methods: A narrative review of the literature from 2000 to 2024 was conducted using the PubMed database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!