A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diagnosing gangrenous cholecystitis on computed tomography using deep learning: A preliminary study. | LitMetric

AI Article Synopsis

  • The study aimed to compare the ability of deep learning algorithms and experienced physicians to diagnose gangrenous cholecystitis from CT images, assessing the potential for diagnostic aid in urgent cases.
  • It analyzed data from 154 patients, training a convolutional neural network (CNN) with a significant number of images and testing its performance against three blinded physicians.
  • Results showed that the CNN outperformed the physicians in key metrics like sensitivity and accuracy, suggesting that deep learning models could be effective tools in clinical decision-making for acute cholecystitis.

Article Abstract

Aim: To compare deep learning and experienced physicians in diagnosing gangrenous cholecystitis using computed tomography images and explore the feasibility of diagnostic assistance for acute cholecystitis requiring emergency surgery.

Methods: This retrospective study included 25 patients with pathologically confirmed gangrenous cholecystitis and 129 patients with noncomplicated acute cholecystitis who underwent computed tomography between 2016 and 2021 at two institutions. All available computed tomography images at the time of the initial diagnosis were used for the analysis. A deep learning model based on a convolutional neural network was trained using 1,517 images of 112 patients (18 patients with gangrenous cholecystitis and 94 patients with acute cholecystitis) and tested with 68 images of 42 patients (seven patients with gangrenous cholecystitis and 35 patients with acute cholecystitis). Three blinded, experienced physicians independently interpreted the test images. The sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve were compared between the convolutional neural network and the reviewers.

Results: The convolutional neural network (sensitivity, 0.70; 95% confidence interval [CI], 0.44-0.87, specificity, 0.93; 95% CI, 0.88-0.96, accuracy, 0.89; 95% CI, 0.81-0.95, area under the receiver operating characteristic curve, 0.84; 95% CI, 0.68-1.00) had achieved a better diagnostic performance than the reviewers (ex. sensitivity, 0.55; 95% CI, 0.30-0.77, specificity, 0.67; 95% CI, 0.62-0.71, accuracy, 0.65; 95% CI, 0.57-0.72, area under the receiver operating characteristic curve, 0.63; 95% CI, 0.44-0.82;  = 0.048 for area under the receiver operating characteristic curve versus convolutional neural network).

Conclusions: Deep learning had a better diagnostic performance than experienced reviewers in diagnosing gangrenous cholecystitis and has potential applicability for assisting in identifying indications for emergency surgery in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9487185PMC
http://dx.doi.org/10.1002/ams2.783DOI Listing

Publication Analysis

Top Keywords

gangrenous cholecystitis
24
computed tomography
16
deep learning
16
acute cholecystitis
16
convolutional neural
16
area receiver
16
receiver operating
16
operating characteristic
16
characteristic curve
16
diagnosing gangrenous
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!