In the past decade, there has been exponentially growing interest in the use of observational data collected as a part of routine healthcare practice to determine the effect of a treatment with causal inference models. Validation of these models, however, has been a challenge because the ground truth is unknown: only one treatment-outcome pair for each person can be observed. There have been multiple efforts to fill this void using synthetic data where the ground truth can be generated. However, to date, these datasets have been severely limited in their utility either by being modeled after small non-representative patient populations, being dissimilar to real target populations, or only providing known effects for two cohorts (treated vs. control). In this work, we produced a large-scale and realistic synthetic dataset that provides ground truth effects for over 10 hypertension treatments on blood pressure outcomes. The synthetic dataset was created by modeling a nationwide cohort of more than 580, 000 hypertension patient data including each person's multi-year history of diagnoses, medications, and laboratory values. We designed a data generation process by combining an adapted ADS-GAN model for fictitious patient information generation and a neural network for treatment outcome generation. Wasserstein distance of 0.35 demonstrates that our synthetic data follows a nearly identical joint distribution to the patient cohort used to generate the data. Patient privacy was a primary concern for this study; the ϵ-identifiability metric, which estimates the probability of actual patients being identified, is 0.008%, ensuring that our synthetic data cannot be used to identify any actual patients. To demonstrate its usage, we tested the bias in causal effect estimation of four well-established models using this dataset. The approach we used can be readily extended to other types of diseases in the clinical domain, and to datasets in other domains as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515575 | PMC |
http://dx.doi.org/10.3389/frai.2022.918813 | DOI Listing |
Sci Rep
January 2025
Department of Exercise Science, Syracuse University, 150 Crouse Dr, Syracuse, NY, 13244, USA.
Analyzing video footage of falls in older adults has emerged as an alternative to traditional lab studies. However, this approach is limited by the labor-intensive process of manually labeling body parts. To address this limitation, we aimed to validate the use of the AI-based pose estimation algorithm (OpenPose) in assessing the hip impact velocity and acceleration of video-captured falls.
View Article and Find Full Text PDFSleep Health
January 2025
Department of Human and Development and Family Studies, Pennsylvania State University, University Park, Pennsylvania, USA.
Goal And Aims: One challenge using wearable sensors is nonwear time. Without a nonwear (e.g.
View Article and Find Full Text PDFJ Oral Facial Pain Headache
March 2024
Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, 100081 Beijing, China.
Pain assessment in trigeminal neuralgia (TN) mouse models is essential for exploring its pathophysiology and developing effective analgesics. However, pain assessment methods for TN mouse models have not been widely studied, resulting in a critical gap in our understanding of TN. With the rapid advancement of deep learning, numerous pain assessment methods based on deep learning have emerged.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.
Purpose: Deep learning is a promising approach to increase reproducibility and time-efficiency of GTV delineation in head and neck cancer, but model evaluation primarily relies on manual GTV delineations as reference annotation, which are subjective and tend to overestimate tumor volume. This study aimed to validate a deep learning model for laryngeal and hypopharyngeal GTV segmentation with pathology and to compare its performance with clinicians' manual delineations.
Materials And Methods: A retrospective dataset of 193 laryngeal and hypopharyngeal cancer patients was used to train a deep learning model with clinical GTV delineations as reference.
Radiother Oncol
January 2025
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Background And Purpose: Daily online adaptive radiotherapy (DART) increases treatment accuracy by crafting daily customized plans that adjust to the patient's daily setup and anatomy. The routine application of DART is limited by its resource-intensive processes. This study proposes a novel DART strategy for head and neck squamous cell carcinoma (HNSCC), automizing the process by propagating physician-edited treatment contours for each fraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!