Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrasound optical tomography (UOT) is a hybrid imaging modality based on interaction between ultrasound and light, with a potential to extend optical imaging capabilities in biological tissues to depths of several centimeters. Several methods have been developed to detect the UOT signal. To better understand their potential for deep tissue imaging, we present a theoretical contrast-to-noise comparison between the spectral hole burning, single-shot off-axis holography, speckle contrast, and photorefractive detection methods for UOT. Our results indicate that spectral hole burning filters have the potential to reach the largest imaging depths. We find that digital off-axis holography and photorefractive detection can have good contrast-to-noise ratio at significant depths. The speckle contrast method has a smaller penetration depth comparatively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484419 | PMC |
http://dx.doi.org/10.1364/BOE.457075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!