Unlabelled: Domain-specific languages (DSLs) are a popular approach among software engineers who demand for a tailored development interface. A DSL-based approach allows to encapsulate the intricacies of the target platform in transformations that turn DSL models into executable software code. Often, DSLs are even claimed to reduce development complexity to a level that allows them to be successfully applied by domain-experts with limited programming knowledge. Recent research has produced some scientifically backed insights on the benefits and limitations of DSLs. Further empirical studies are required to build a sufficient body of knowledge from which support for different claims related to DSLs can be derived. In this research study, we adopt current DSL evaluation approaches to investigate potential gains in terms of effectiveness and efficiency, through the application of our DSL , a language developed for the domain of traffic and transportation simulation and optimisation. We compare Athos to the alternative of using an application library defined within a general-purpose language (GPL). We specified two sets of structurally identical tasks from the domain of vehicle routing problems and asked study groups with differing levels of programming knowledge to solve the tasks with the two approaches. The results show that inexperienced participants achieved considerable gains in effectiveness and efficiency with the usage of Athos DSL. Though hinting at Athos being the more efficient approach, the results were less distinct for more experienced programmers. The vast majority of participants stated to prefer working with Athos over the usage of the presented GPL's API.
Supplementary Information: The online version contains supplementary material available at 10.1007/s10664-022-10210-whttps://doi.org/10.1007/s10664-022-10210-w.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510508 | PMC |
http://dx.doi.org/10.1007/s10664-022-10210-w | DOI Listing |
Sensors (Basel)
January 2025
Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518000, China.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Cyber Science and Engineering, Liaoning University, Shenyang 110036, China.
Electric vehicles (EVs) are gaining significant attention as an environmentally friendly transportation solution. However, limitations in battery technology continue to restrict EV range and charging speed, resulting in range anxiety, which hampers widespread adoption. While there has been increasing research on EV route optimization, personalized path planning that caters to individual user needs remains underexplored.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
In mission-critical environments such as industrial and military settings, the use of unmanned vehicles is on the rise. These scenarios typically involve a ground control system (GCS) and nodes such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). The GCS and nodes exchange different types of information, including control data that direct unmanned vehicle movements and sensor data that capture real-world environmental conditions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
IT Research Institute, Chosun University, Gwangju 61452, Republic of Korea.
The high mobility and dynamic nature of unmanned aerial vehicles (UAVs) pose significant challenges to clustering and routing in flying ad hoc networks (FANETs). Traditional methods often fail to achieve stable networks with efficient resource utilization and low latency. To address these issues, we propose a hybrid bio-inspired algorithm, HMAO, combining the mountain gazelle optimizer (MGO) and the aquila optimizer (AO).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Health and Wellness, Cape Winelands District, Ceres, South Africa.
Despite much literature on operations research applied to various healthcare problems, impactful implementation in public healthcare is limited, which often results in allocative inefficiency. This article uses a mobile clinic routing and scheduling problem in the Witzenberg region of South Africa as a case study to demonstrate the improvement of implementation success through cross-disciplinary collaboration, and also to propose a new three-stage approach for modelling a mobile clinic problem that incorporates continuity of care, fairness, and minimisation of distance travelled. Mobile clinics are used in many countries to improve access to healthcare for rural communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!