This paper introduces stretchable, long-term wearable, tattoo-like dry surface electrodes for highly repeatable electromyography (EMG). The tattoo-like sensors are hair thin, skin compliant and can be laminated on human skin just like a temporary transfer tattoo, which enables multi-day noninvasive but intimate contact with the skin even under severe skin deformation. The new electrodes were used to facilitate a system-based approach to tracking of long-term fatiguing and recovery processes in a human neuromusculoskeletal (NMS) system, which was based on establishing an autoregressive moving average model with exogenous inputs (ARMAX model) relating signatures extracted from the surface electromyogram (sEMG) signals collected using the tattoo-like sensors, and the corresponding hand grip force (HGF) serving as the model output. Performance degradation of the relevant NMS system was evaluated by tracking the evolution of the errors of the ARMAX model established using the data corresponding to the rested (fresh) state of any given subject. Results from several exercise sessions clearly showed repeated patterns of fatiguing and resting, with a notable point that these patterns could now be quantified via dynamic models relating the relevant muscle signatures and NMS outputs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521320 | PMC |
Nanomaterials (Basel)
August 2023
Multifunctional Nano Bio Electronics Lab, Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Disposable wearable sensors that ultrathin and conformable to the skin are of significant interest as affordable and easy-to-use devices for short-term recording. This study presents a facile and low-cost method for transferring spray-coated silver nanowire (AgNW) composite films onto human skin using glossy paper (GP) and liquid bandages (LB). Due to the moderately hydrophobic and rough surface of the GP, the ultrathin AgNWs composite film (~200 nm) was easily transferred onto human skin.
View Article and Find Full Text PDFNat Rev Mater
July 2022
FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany.
Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals.
View Article and Find Full Text PDFAdv Mater
October 2019
Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia.
Sensitive, specific, yet multifunctional tattoo-like electronics are ideal wearable systems for "any time, any where" health monitoring because they can virtually become parts of the human skin, offering a burdenless "unfeelable" wearing experience. A skin-like, multifunctional electronic tattoo made entirely from gold using a standing enokitake-mushroom-like vertically aligned nanowire membrane in conjunction with a programmable local cracking technology is reported. Unlike previous multifunctional systems, only a single material type is needed for the integrated gold circuits involved in interconnects and multiplexed specific sensors, thereby avoiding the use of complex multimaterials interfaces.
View Article and Find Full Text PDFInt J Progn Health Manag
January 2019
The University of Texas at Austin, Austin, TX,78712, USA.
This paper introduces stretchable, long-term wearable, tattoo-like dry surface electrodes for highly repeatable electromyography (EMG). The tattoo-like sensors are hair thin, skin compliant and can be laminated on human skin just like a temporary transfer tattoo, which enables multi-day noninvasive but intimate contact with the skin even under severe skin deformation. The new electrodes were used to facilitate a system-based approach to tracking of long-term fatiguing and recovery processes in a human neuromusculoskeletal (NMS) system, which was based on establishing an autoregressive moving average model with exogenous inputs (ARMAX model) relating signatures extracted from the surface electromyogram (sEMG) signals collected using the tattoo-like sensors, and the corresponding hand grip force (HGF) serving as the model output.
View Article and Find Full Text PDFMicromachines (Basel)
April 2018
Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA.
Wearable tissue heaters can play many important roles in the medical field. They may be used for heat therapy, perioperative warming and controlled transdermal drug delivery, among other applications. State-of-the-art heaters are too bulky, rigid, or difficult to control to be able to maintain long-term wearability and safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!