A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD). Here we combined advanced light and electron microscopy (EM) to characterize the effects of AKAP79/150 palmitoylation on its postsynaptic nanoscale organization, trafficking, and mobility in hippocampal neurons. Immunogold EM revealed prominent extrasynaptic membrane AKAP150 labeling with less labeling at the PSD. The label was at greater distances from the spine membrane for AKAP150 CS than WT in the PSD but not in extra-synaptic locations. Immunogold EM of GFP-tagged AKAP79 WT showed that AKAP79 adopts a vertical, extended conformation at the PSD with its N-terminus at the membrane, in contrast to extrasynaptic locations where it adopts a compact or open configurations of its N- and C-termini with parallel orientation to the membrane. In contrast, GFP-tagged AKAP79 CS was displaced from the PSD coincident with disruption of its vertical orientation, while proximity and orientation with respect to the extra-synaptic membrane was less impacted. Single-molecule localization microscopy (SMLM) revealed a heterogeneous distribution of AKAP150 with distinct high-density, nano-scale regions (HDRs) overlapping the PSD but more prominently located in the extrasynaptic membrane for WT and the CS mutant. Thick section scanning transmission electron microscopy (STEM) tomography revealed AKAP150 immunogold clusters similar in size to HDRs seen by SMLM and more AKAP150 labeled endosomes in spines for WT than for CS, consistent with the requirement for AKAP palmitoylation in endosomal trafficking. Hidden Markov modeling of single molecule tracking data revealed a bound/immobile fraction and two mobile fractions for AKAP79 in spines, with the CS mutant having shorter dwell times and faster transition rates between states than WT, suggesting that palmitoylation stabilizes individual AKAP molecules in various spine subpopulations. These data demonstrate that palmitoylation fine tunes the nanoscale localization, mobility, and trafficking of AKAP79/150 in dendritic spines, which might have profound effects on its regulation of synaptic plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521714 | PMC |
http://dx.doi.org/10.3389/fnsyn.2022.1004154 | DOI Listing |
J Genet Genomics
December 2024
Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China; School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia 750004, China. Electronic address:
Spermiogenesis is an indispensable process occurring during the later stages of spermatogenesis. Despite multiple proteins being associated with spermiogenesis, the molecular mechanisms that control spermiogenesis remain poorly characterized. In this study, we show that 1700030J22RIK is exclusively expressed in the testis of mice and investigate its roles in spermiogenesis using genetic and proteomic approaches.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
The primary cilium is a cellular organelle whose assembly and disassembly are closely linked to the cell cycle. The centriole distal appendage (DA) is essential for the early stages of ciliogenesis by anchoring the mother centriole to the cell surface. Despite the identification of over twelve proteins constituting the DA, including CEP83, CEP89, CEP164, FBF1, and SCLT1, their specific functions in ciliary dynamics are not fully understood.
View Article and Find Full Text PDFFront Mol Neurosci
November 2024
Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland.
Central to the process of axon elongation is the concept of compartmentalized signaling, which involves the A-kinase anchoring protein (AKAP)-dependent organization of signaling pathways within distinct subcellular domains. This spatial organization is also critical for translating electrical activity into biochemical events. Despite intensive research, the detailed mechanisms by which the spatial separation of signaling pathways governs axonal outgrowth and pathfinding remain unresolved.
View Article and Find Full Text PDFBiochem Soc Trans
December 2024
Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, U.K.
Regionalisation of molecular mechanisms allows cells to fine-tune their responses to dynamic environments. In this context, scaffolds are well-known mediators of localised protein activity. These phenomenal proteins act as docking sites where pathway components are brought together to ensure efficient and reliable flow of information within the cell.
View Article and Find Full Text PDFNeural Regen Res
October 2025
Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, USA (Flerlage WJ, Cox BM, Nugent FS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!