Ordered intermetallic alloys with significantly improved activity and stability have attracted extensive attention as advanced electrocatalysts for reactions in polymer electrolyte membrane fuel cells (PEMFCs). Here, recent advances in tuning intermetallic Pt- and Pd-based nanocrystals with tunable morphology and structure in PEMFCs to catalyze the cathodic reduction of oxygen and the anodic oxidation of fuels are highlighted. The fabrication/tuning of ordered noble metal-transition metal-bonded intermetallic PtM and PdM (M = Fe, Co) nanocrystals by using high temperature annealing treatments to promote the activity and stability of electrocatalytic reactions are discussed. Furthermore, the further improvement of the efficiency of this unique ordered intermetallic alloys for electrocatalysis are also proposed and discussed. This report aims to demonstrate the potential of the ordered intermetallic strategy of noble and transition metals to facilitate electrocatalysis and facilitate more research efforts in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520242 | PMC |
http://dx.doi.org/10.3389/fchem.2022.1007931 | DOI Listing |
Dalton Trans
January 2025
Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany.
The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.
Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Materials Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.
AISI 316L stainless steel is extensively used in various fields, including medicine. In this study, in order to improve antibacterial properties, reduce elastic modulus, increase hydrophilicity and delay corrosion on the surface of AISI 316L stainless steel pieces for biomedical applications, zinc and magnesium elements were used for coating. Zn monolayer, Zn-Mg bilayer, and Zn-Mg-Zn triple coatings were deposited on AISI 316L substrates using the thermal evaporation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!