SARS-CoV-2 isolation from cold-chain food products confirms the possibility of outbreaks through cold-chain food products. RNA extraction combined with RT-PCR is the primary method currently utilized for the detection of SARS-CoV-2. However, the requirement of hours of analytical time and the high price of RT-PCR hinder its worldwide implementation in food supervision. Here, we report a fluorescence biosensor for detection of SARS-CoV-2 N protein. The fluorescence biosensor was fabricated by aptamer-based conformational entropy-driven circuit where molecular beacon strands were labeled with graphitic carbon nitrides quantum dots@Zn-metal-organic framework (g-CNQDs@Zn-MOF) and Dabcyl. The detection of the N protein was achieved via swabbing followed by competitive assay using a fixed amount of N-48 aptamers in the analytical system. A fluorescence emission spectrum was employed for the detection. The detection limit of our fluorescence biosensor was 1.0 pg/mL for SARS-CoV-2 N protein, indicating very excellent sensitivity. The fluorescence biosensor did not exhibit significant cross-reactivity with other N proteins. Finally, the biosensor was successfully applied for the detection of SARS-CoV-2 N protein in actual cold-chain food products showing same excellent accuracy as RT-PCR method. Thus, our fluorescence biosensor is a promising analytical tool for rapid and sensitive detection of SARS-CoV-2 N protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510831PMC
http://dx.doi.org/10.1016/j.lwt.2022.114032DOI Listing

Publication Analysis

Top Keywords

fluorescence biosensor
24
cold-chain food
16
food products
16
detection sars-cov-2
16
sars-cov-2 protein
16
detection
8
biosensor
7
sars-cov-2
7
protein
6
fluorescence
6

Similar Publications

Fluorescence characterization of halophilic archaeal C50 carotenoid-bacterioruberin extracts was investigated using UV/Vis and steady-state fluorescence spectrophotometry in solvents with different polarity. Different extracts showed maximum absorption and fluorescence wavelengths between 369-536 nm and 540-569 nm. Stokes' shifts varied between 50-79 nm depending on the solvent.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!