AI Article Synopsis

  • The COVID-19 pandemic poses a significant global health threat, with limited therapeutic options available against the virus SARS-CoV-2.
  • Researchers have developed molecular tweezers, specifically CLR01 and CLR05, that can disrupt the virus's envelope, rendering it non-infectious.
  • Advancements in tweezers led to 34 new variants with improved antiviral properties, effective against not only SARS-CoV-2 but also other viral infections, showing promise for future clinical use.

Article Abstract

The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516563PMC
http://dx.doi.org/10.1021/jacsau.2c00220DOI Listing

Publication Analysis

Top Keywords

molecular tweezers
12
advanced molecular
8
viral infectivity
8
respiratory syncytial
8
tweezers
7
sars-cov-2
7
tweezers lipid
4
lipid anchors
4
anchors sars-cov-2
4
sars-cov-2 respiratory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!