This study investigated the second language (L2) processing and acquisition of Chinese temporality, specifically the interaction of grammatical and lexical aspects. An experimental group of 31 English-speaking learners of Chinese and a control group of 29 native speakers of Mandarin Chinese completed an online sentence-picture matching task and an offline translation task. Results from these experiments demonstrated the prototype effect: In aspectual development, perfective aspect started with telic verbs and progressive aspect started with activity verbs, in accordance with the Aspect Hypothesis, both for online processing and offline comprehension. The prototype effect of the grammatical aspect was evident for activity verbs but less so for accomplishment verbs in the L2 group across tasks, and this was explained through language-specific properties and L2 learners' instructional input. In addition, L2 proficiency and working memory capacity were found to modulate these processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521628 | PMC |
http://dx.doi.org/10.3389/fpsyg.2022.964861 | DOI Listing |
J Environ Manage
January 2025
Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China. Electronic address:
Biocrusts are the primary organic carbon reservoirs in desert areas, in which inorganic clays potentially playing significant roles; however, the specific details of these roles remain largely unclear. In this study, typical 1:1 type (kaolin) and 2:1 type (montmorillonite, MMT) clay minerals were added to artificial biocrusts to investigate their effect on the acquisition performance of soil organic carbon (SOC). After 84 days of cultivation, the enhancement effects of kaolin and MMT were significant, resulting in SOC increments that were 5.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.
Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.
View Article and Find Full Text PDFCan Med Educ J
December 2024
Department of Physical Medicine and Rehabilitation, Queen's University, Ontario, Canada.
Background: Resident-focused curricula that support competency acquisition in concussion care are currently lacking. We sought to fill this gap by developing and evaluating Spiral Integrated Curricula (SIC) using the cognitive constructivism paradigm and the Utilization-Focused Evaluation (UFE) framework. The evidence-based curricula consisted of academic half-days (AHDs) and clinics for first- and second-year family medicine residents.
View Article and Find Full Text PDFAnn Dyslexia
January 2025
Developmental and Educational Psychology Department, Universidad de Granada, Granada, Spain.
Recent research suggests that performance on Statistical Learning (SL) tasks may be lower in children with dyslexia in deep orthographies such as English. However, it is debated whether the observed difficulties may vary depending on the modality and stimulus of the task, opening a broad discussion about whether SL is a domain-general or domain-specific construct. Besides, little is known about SL in children with dyslexia who learn transparent orthographies, where the transparency of grapheme-phoneme correspondences might reduce the reliance on implicit learning processes.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Neuro-Electronics Research Flanders, Kapeldreef 75, Leuven, 3001, Belgium.
The brain is composed of a dense and ramified vascular network of arteries, veins and capillaries of various sizes. One way to assess the risk of cerebrovascular pathologies is to use computational models to predict the physiological effects of reduced blood supply and correlate these responses with observations of brain damage. Therefore, it is crucial to establish a detailed 3D organization of the brain vasculature, which could be used to develop more accurate in silico models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!