Deep neural networks can be used to diagnose and detect plant diseases, helping to avoid the plant health-related crop production losses ranging from 20 to 50% annually. However, the data collection and annotation required to achieve high accuracies can be expensive and sometimes very difficult to obtain in specific use-cases. To this end, this work proposes a synthetic data generation pipeline based on generative adversarial networks (GANs), allowing users to artificially generate images to augment their small datasets through its web interface. The image-generation pipeline is tested on a home-collected dataset of whitefly pests, , on different crop types. The data augmentation is shown to improve the performance of lightweight object detection models when the dataset size is increased from 140 to 560 images, seeing a jump in recall at 0.50 IoU from 54.4 to 93.2%, and an increase in the average IoU from 34.6 to 70.9%, without the use of GANs. When GANs are used to increase the number of source object masks and further diversify the dataset, there is an additional 1.4 and 2.6% increase in recall and average IoU, respectively. The authenticity of the generated data is also validated by human reviewers, who reviewed the GANs generated data and scored an average of 56% in distinguishing fake from real insects for low-resolutions sets, and 67% for high-resolution sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523729PMC
http://dx.doi.org/10.3389/fpls.2022.813050DOI Listing

Publication Analysis

Top Keywords

average iou
8
generated data
8
data
5
gan-based semi-automated
4
semi-automated augmentation
4
augmentation online
4
online tool
4
tool agricultural
4
agricultural pest
4
pest detection
4

Similar Publications

Learnable color space conversion and fusion for stain normalization in pathology images.

Med Image Anal

December 2024

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China. Electronic address:

Variations in hue and contrast are common in H&E-stained pathology images due to differences in slide preparation across various institutions. Such stain variations, while not affecting pathologists much in diagnosing the biopsy, pose significant challenges for computer-assisted diagnostic systems, leading to potential underdiagnosis or misdiagnosis, especially when stain differentiation introduces substantial heterogeneity across datasets from different sources. Traditional stain normalization methods, aimed at mitigating these issues, often require labor-intensive selection of appropriate templates, limiting their practicality and automation.

View Article and Find Full Text PDF

Thyroid nodules are a common thyroid disorder, and ultrasound imaging, as the primary diagnostic tool, is susceptible to variations based on the physician's experience, leading to misdiagnosis. This paper constructs an end-to-end thyroid nodule detection framework based on YOLOv8, enabling automatic detection and classification of nodules by extracting grayscale and elastic features from ultrasound images. First, an attention-weighted DCN is introduced to enhance superficial feature extraction and capture local information.

View Article and Find Full Text PDF

This study introduced a novel approach to 3D image segmentation utilizing a neural network framework applied to 2D depth map imagery, with Z axis values visualized through color gradation. This research involved comprehensive data collection from mechanically harvested wild blueberries to populate 3D and red-green-blue (RGB) images of filled totes through time-of-flight and RGB cameras, respectively. Advanced neural network models from the YOLOv8 and Detectron2 frameworks were assessed for their segmentation capabilities.

View Article and Find Full Text PDF

Walnuts possess significant nutritional and economic value. Fast and accurate sorting of shells and kernels will enhance the efficiency of automated production. Therefore, we propose a FastQAFPN-YOLOv8s object detection network to achieve rapid and precise detection of unsorted materials.

View Article and Find Full Text PDF

Remote patient monitoring has emerged as a prominent non-invasive method, using digital technologies and computer vision (CV) to replace traditional invasive monitoring. While neonatal and pediatric departments embrace this approach, Pediatric Intensive Care Units (PICUs) face the challenge of occlusions hindering accurate image analysis and interpretation. In this study, we propose a hybrid approach to effectively segment common occlusions encountered in remote monitoring applications within PICUs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!