Background And Aim: Heat stress (HS) can negatively impact farm animal productivity and adversely affect animal welfare worldwide, placing a major financial burden on global livestock producers. Dietary betaine (trimethylglycine) has been known to have several biological functions, which may aid in offering beneficial effects on livestock productivity during HS conditions. However, information on the role of dietary betaine in heat-stressed dairy heifer calves is yet to be documented. Therefore, this study aimed to assess the effects of supplementing dietary betaine on body temperature indices, blood metabolites, productive performance, and complete blood count (CBC) (hematological indices) in hyperthermic dairy heifer calves.
Materials And Methods: In total, 14 Holstein heifer calves (4.0 ± 0.9 months old) were individually housed and randomly allocated to one of two dietary treatments: (1) a control diet (CON; n = 7) and (2) a control diet complemented with 21 g/d of natural betaine (BET; n = 7) top-dressed once daily. The experiment lasted for 28 d, during which all animals were subjected to natural cyclic HS conditions (26.1-39.2°C; 73.2-84.0 temperature-humidity index). Rectal temperature (RT) and respiration rate (RR) were measured twice daily (0700 and 1500 h), whereas dry matter intake (DMI) was measured once daily (0800 h). In addition, blood samples (collected from the jugular vein) were analyzed for metabolites and CBC on days 7, 14, 21, and 28.
Results: Relative to CON, BET supplementation was able to decrease RT on day 23 of the experiment (p = 0.04). Alternatively, RR was similar between the dietary treatments (p = 0.73). Feeding BET did not affect DMI compared with CON during HS conditions (p = 0.48). Furthermore, compared with CON, BET supplementation did not change leukocytes, neutrophils, lymphocytes, and hematocrit levels during HS conditions (p ≥ 0.17). However, a analysis indicated that hematocrit levels were decreased in BET-fed calves on day 7 of the study compared with CON calves during HS conditions (p = 0.05). Moreover, circulating glucose, albumin, and triglycerides were found to be similar between dietary treatments (p ≥ 0.55).
Conclusion: BET supplementation slightly reduced RT and circulating hematocrit but did not affect other metrics in this HS experiment. More research into the effects of different doses of dietary BET on dairy heifer calves is needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394152 | PMC |
http://dx.doi.org/10.14202/vetworld.2022.1657-1664 | DOI Listing |
Vet Q
December 2025
Faculty of Veterinary Medicine, Department of Small Animals, Ghent University, Merelbeke, Belgium.
Chronic Kidney Disease (CKD) is one of the most common conditions affecting felines, yet the metabolic alterations underlying its pathophysiology remain poorly understood, hindering progress in identifying biomarkers and therapeutic targets. This study aimed to provide a comprehensive view of metabolic changes in feline CKD across conserved biochemical pathways and evaluate their progression throughout the disease continuum. Using a multi-biomatrix high-throughput metabolomics approach, serum and urine samples from CKD-affected cats ( = 94) and healthy controls ( = 84) were analyzed with ultra-high-performance liquid chromatography-high-resolution mass spectrometry.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China.
Betaine exhibits significant physiological functions in organisms and has positive impacts on obesity, alcohol-induced and metabolic-associated liver disease, diabetes, cardiovascular diseases, and certain cancers. However, the evidence from epidemiological studies is limited and inconsistent. This study aimed to investigate the association between dietary betaine intake and the incidence of overweight or obesity.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
December 2024
Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy.
Food leftovers can be used as alternative feed ingredients for monogastric to replace human-competing feedstuffs, such as cereals, recycle a waste product, reduce the feed-food competition and keep nutrients and energy in the feed-food chain. Among food leftovers, former food products (FFPs) are no more intended for human but still suitable for animal consumption. However, the metabolic impact of FFP has never been investigated.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
December 2024
Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China.
This study aimed to investigate the effect of a multi-strain probiotic (Bifidobacterium B8101, Lactobacillus L8603, Saccharomyces bayanus S9308, Enterococcus SF9301), betaine, and their combination on intestinal epithelial development and growth performance in broilers. A total of 2800 one-day-old Ross 308 chickens were randomly divided into four groups: control (Ctrl) fed with a basal diet, multi-strain probiotic (Pb) group fed with basal diet + 100 mg/day/bird probiotic (1-14 d), betaine (Bet) fed with basal diet + 0.1% betaine (1-35 d), and a combination (Pb&Bet) fed with both probiotics and betaine.
View Article and Find Full Text PDFClin Nutr
January 2025
Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan. Electronic address:
Background: Trimethylamine N-oxide (TMAO) is a gut microbial metabolite derived from dietary l-carnitine and choline. High plasma TMAO levels are associated with cardiovascular disease and overall mortality, but little is known about the associations of TMAO and related metabolites with the risk of kidney function decline among patients with chronic kidney disease (CKD).
Methods: We prospectively followed 152 nondialysis patients with CKD stages 3-5 and measured plasma TMAO and related metabolites (trimethylamine [TMA], choline, carnitine, and γ-butyrobetaine) via liquid chromatography‒mass spectrometry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!