The primary hyperoxalurias are rare disorders of glyoxylate metabolism. Accurate diagnosis is essential for therapeutic and management strategies. We conducted a molecular study on patients suffering from recurrent calcium-oxalate stones and nephrocalcinosis and screened primary hyperoxaluria causing genes in a large cohort of early-onset cases. Disease-associated pathogenic-variants were defined as missense, nonsense, frameshift-indels, and splice-site variants with a reported minor allele frequency <1% in controls. We found pathogenic-variants in 34% of the cases. Variants in the AGXT gene causing PH-I were identified in 81% of the mutation positive cases. PH-II-associated variants in the GRHPR gene are found in 15% of the pediatric PH-positive population. Only 3% of the PH-positive cases have pathogenic-variants in the HOGA1 gene, responsible to cause PH-III. A population-specific AGXT gene variant c.1049G>A; p.Gly350Asp accounts for 22% of the PH-I-positive patients. Pathogenicity of the identified variants was evaluated by in-silico tools and ACMG guidelines. We have devised a rapid and low-cost approach for the screening of PH by using targeted-NGS highlighting the importance of an accurate and cost-effective screening platform. This is the largest study in Pakistani pediatric patients from South-Asian region that also expands the mutation spectrum of the three known genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.14240DOI Listing

Publication Analysis

Top Keywords

primary hyperoxaluria
8
causing genes
8
hyperoxaluria comprehensive
4
comprehensive mutation
4
mutation screening
4
screening disease
4
disease causing
4
genes spectrum
4
spectrum disease-associated
4
disease-associated pathogenic
4

Similar Publications

Cutting through the stones: Unlocking therapeutic potential with gene editing tools for primary hyperoxaluria type 1.

Mol Ther

December 2024

Department of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China. Electronic address:

View Article and Find Full Text PDF

Background: The combination of high prices and uncertain effectiveness is a growing challenge in the field of orphan medicines, hampering health technology assessments. Hence, new methods for establishing price benchmarks might be necessary to support reimbursement negotiations. In this study, we applied several pricing models containing cost-based elements to the case of lumasiran for treating primary hyperoxaluria type 1.

View Article and Find Full Text PDF

Catheter-related bloodstream infections (CRBSIs) add to the morbidity and mortality of hemodialysis patients. is an extremely resistant, gram-negative, non-lactose-fermenting nosocomial bacterium that contributes significantly to mortality and morbidity. This bacterium is predominantly associated with community-acquired pneumonia, bacteremia, eye afflictions, biliary sepsis, urinary tract infection, skin and soft tissue infection, and very rarely chronic enteritis with colonic ulcers.

View Article and Find Full Text PDF

Purpose Of Review: Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder of hepatic glyoxylate metabolism leading to nephrolithiasis and kidney failure. PH1 is caused by mutations on the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT). The AGXT gene has two haplotypes, the major (Ma) and the minor (mi) alleles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!