Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine-threonine protein kinase vital for neuronal cell cycle arrest and differentiation. It activates by binding with p35 and p39 and is important for the functioning of the nervous system. A growing body of evidence suggests that CDK5 contributes to the onset and progression of neurodegeneration and tumorigenesis and represents itself as a potential therapeutic target. Our research illustrates virtual screening of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) library to search for potential inhibitors of CDK5. Initially, the compounds from the parent library were filtered out via their physicochemical properties following the Lipinski rule of five. Then sequentially, molecular docking-based virtual screening, PAINS filter, ADMET, PASS analysis, and molecular dynamics (MD) simulation were done using various computational tools to rule out adversities that can cause hindrances in the identification of potential inhibitors of CDK5. Finally, two compounds were selected via the extensive screening showing significant binding with CDK5 ATP-binding pocket and ultimately were selected as potent ATP-competitive inhibitors of CDK5. Finally, we propose that the elucidated compounds Desmodin and Isopongachromene can be used further in the drug discovery process and act as therapeutics in the medical industry to treat certain complex diseases, including cancer and neurodegeneration.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2022.2128877 | DOI Listing |
J Immunother
October 2024
Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China.
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.
View Article and Find Full Text PDFClin Neuropharmacol
October 2024
Department of Neurosurgery, Yubei District Hospital of TCM, Chongqing, China.
Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.
View Article and Find Full Text PDFJ Med Chem
January 2025
Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.
Protein arginine methyltransferase 5 (PRMT5), which catalyzes the symmetric dimethylation of arginine residues on target proteins, plays a critical role in gene expression regulation, RNA processing, and signal transduction. Aberrant PRMT5 activity has been implicated in cancers and other diseases, making it a potential therapeutic target. Here, we report the discovery of a methylthioadenosine (MTA) cooperative PRMT5 inhibitor.
View Article and Find Full Text PDFJ Med Chem
January 2025
Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany.
While sulfoximines are nowadays a well established functional group for medicinal chemistry, the properties of sulfilimines are significantly less well studied, and no sulfilimine has progressed to the clinic to date. In this account, the physicochemical and in vitro properties of sulfilimines are reported and compared to those of sulfoximines and other more traditional functional groups. Furthermore, the impact on the physicochemical and in vitro properties of real drug scaffolds is studied in two series of sulfilimine-containing analogs of imatinib and hNE inhibitors.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in , which is capable of rapidly introducing A → G mutations into the genome, resulting in a 664-fold increase in terms of mutation rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!