Repurposing of antiviral drugs affords a rapid and effective strategy to develop therapies to counter pandemics such as COVID-19. SARS-CoV-2 replication is closely linked to the metabolism of cytosine-containing nucleotides, especially cytidine-5'-triphosphate (CTP), such that the integrity of the viral genome is highly sensitive to intracellular CTP levels. CTP synthase (CTPS) catalyzes the rate-limiting step for the de novo biosynthesis of CTP. Hence, it is of interest to know the effects of the 5'-triphosphate (TP) metabolites of repurposed antiviral agents on CTPS activity. Using E. coli CTPS as a model enzyme, we show that ribavirin-5'-TP is a weak allosteric activator of CTPS, while sofosbuvir-5'-TP and adenine-arabinofuranoside-5'-TP are both substrates. β-d-N -Hydroxycytidine-5'-TP is a weak competitive inhibitor relative to CTP, but induces filament formation by CTPS. Alternatively, sofosbuvir-5'-TP prevented CTP-induced filament formation. These results reveal the underlying potential for repurposed antivirals to affect the activity of a critical pyrimidine nucleotide biosynthetic enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538051PMC
http://dx.doi.org/10.1002/cmdc.202200399DOI Listing

Publication Analysis

Top Keywords

filament formation
12
effects 5'-triphosphate
8
5'-triphosphate metabolites
8
ctp synthase
8
repurposing antiviral
8
antiviral agents
8
ctp
6
ctps
5
metabolites ribavirin
4
ribavirin sofosbuvir
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!