In this research work, a novel composite membrane was synthesized from activated carbon (AC) derived from sesban, sodium benzyl dodycyel sulphate (SBDS) treated montmorillonite (MMT) clay and alginate (alg) for the adsorption of methylene-blue (MB) dye. The AC-MMT-alg composite membranes were characterized using analytical characterizations such as FTIR, SEM, EDX and TGA analysis. Several important factors like initial solution pH, contact time, membrane dose, MB concentrations and temperature effect on the adsorption efficiency of membrane were investigated. MB dye adsorption on the synthesized membrane was explained well by pseudo second order equation. Isotherm study showed that MB adsorption data followed Langmuir adsorption isotherm model. The adsorption capacity of membrane for MB was 1429 mg/g from aqueous solution. Thermodynamic study confirmed endothermic and spontaneous MB adsorption on the adsorbent. The mechanistic path way indicated that electrostatic forces were involved in this adsorption process. The synthesized membrane proved an efficient adsorbent for MB adsorption from aqueous media.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136623DOI Listing

Publication Analysis

Top Keywords

adsorption
10
composite membrane
8
synthesized membrane
8
membrane
7
synthesis activated
4
activated carbon-surfactant
4
carbon-surfactant modified
4
modified montmorillonite
4
montmorillonite clay-alginate
4
clay-alginate composite
4

Similar Publications

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!