A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sediment nitrogen contents controlled by microbial community in a eutrophic tributary in Three Gorges Reservoir, China. | LitMetric

AI Article Synopsis

  • Nitrogen pollution is a major issue in reservoir ecosystems, prompting the need for research on improving nitrogen removal in river sediments.
  • In Xiangxi bay (XXB), significant degradation of nitrogen compounds occurs during sediment burial, with downstream areas showing higher nitrogen mineralization due to turbulence.
  • Various bacteria involved in nitrogen cycling were found in the sediments, with dissolved oxygen and nitrate levels identified as key factors affecting denitrification, suggesting that enhancing these elements could improve nitrogen removal in aquatic environments.

Article Abstract

Nitrogen pollution caused serious environmental problems in reservoir ecosystems. Reducing nitrogen pollution by enhancing nitrogen removal in river sediments deserved intensive research. Distributions of nitrogen contents in sediment-water interface were characterized along the Xiangxi bay (XXB), a eutrophic tributary in Three Gorges Reservoir, China. More than 47% of total Kjeldahl nitrogen (TKN) and 67% of total organic nitrogen (TON) were degraded during burial. Higher TN, TON and NH consuming at downstream sites indicated stronger nitrogen mineralization and release due to higher turbulence of the overlying density currents. Nitrifying bacteria, denitrifying bacteria, anaerobic ammonium oxidizing (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-DAMO) bacteria were detected in nitrate-ammonium transition zone. Nitrogen contents transitions were responded to microbial stakeholders indicated microbially mediated nitrogen cycling in sediments. The dissolved oxygen and nitrate availabilities were the key limits of denitrification and associated reactions. These results suggested microbial mediated nitrogen cycling processes in sediments were critical for nitrogen removal in aquatic ecosystems, and replenishing dissolved oxygen and nitrate was expected to enhance sediment denitrification and strengthen potential environmental self-purification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.120312DOI Listing

Publication Analysis

Top Keywords

nitrogen contents
12
nitrogen
11
eutrophic tributary
8
tributary three
8
three gorges
8
gorges reservoir
8
reservoir china
8
nitrogen pollution
8
nitrogen removal
8
mediated nitrogen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!