AI Article Synopsis

Article Abstract

Introduction: Extremely low birth weight (ELBW) survivors have microvascular structural differences already described in kidney and retina, suggesting changes in endothelial integrity. A biomarker of endothelial integrity is perfused boundary region (PBR), which measures glycocalycal thickness. The endothelial glycocalyx is a complex, highly versatile structure with essential roles in vascular integrity and function. We explored PBR patterns together with other microvascular markers in healthy controls and former ELBW children.

Methods: In the PREMATCH cohort (87 healthy controls, 93 ELBW survivors), we assessed endothelial integrity by calculating PBR (sidestream dark-field imaging), several microvascular markers (blood pressure, estimated glomerular filtration rate (eGFR)), and retinal imaging in early adolescence. We explored differences between both groups, and searched for perinatal determinants of PBR and correlations between different microvascular markers.

Results: We provided reference values for PBR (average 1.90 µm, SD 0.30) in children. PBR was not different from ELBW survivors during early adolescence, despite their higher blood pressure, lower eGFR, and different retinal vessel width and tortuosity.

Conclusions: We generated reference values for PBR in early adolescence. Despite some correlations between microvascular parameters, there seem to be numerous confounders to propose PBR as a marker for endothelial integrity in ELBW survivors.

Impact: The endothelial glycocalyx is a complex and versatile structure. Changes in blood pressure and retinal and renal vascularization suggest a disturbance of its integrity in extremely low birth weight (ELBW) survivors. Its thickness can be measured by calculating perfused boundary region (PBR) using sidestream dark-field imaging, with a higher PBR indicating a thinner glycocalyx. We generated reference values for PBR in healthy adolescents. These values were not different in former ELBW children. Despite some correlations of PBR with other microvascular biomarkers, these are not strong enough to describe endothelial integrity and its covariates in former ELBW children.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41390-022-02321-3DOI Listing

Publication Analysis

Top Keywords

endothelial integrity
24
elbw survivors
16
perfused boundary
12
boundary region
12
pbr
12
blood pressure
12
early adolescence
12
reference values
12
values pbr
12
endothelial
8

Similar Publications

This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.

View Article and Find Full Text PDF

Quantifying Pulmonary Microvascular Density in Mice Across Lobules.

J Vis Exp

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University;

The abnormal alternation of pulmonary angiogenesis is related to lung microvascular dysfunction and is deeply linked to vascular wall integrity, blood flow regulation, and gas exchange. In murine models, lung lobes exhibit significant differences in size, shape, location, and vascularization, yet existing methods lack consideration for these variations when quantifying microvascular density. This limitation hinders the comprehensive study of lung microvascular dysfunction and the potential remodeling of microvasculature circulation across different lobules.

View Article and Find Full Text PDF

Exercised gut microbiota improves vascular and metabolic abnormalities in sedentary diabetic mice through gut‒vascular connection.

J Sport Health Sci

January 2025

Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR 999077, China. Electronic address:

Background: Exercise elicits cardiometabolic benefits, reducing the risks of cardiovascular diseases and type 2 diabetes. This study aimed to investigate the vascular and metabolic effects of gut microbiota from exercise-trained donors on sedentary mice with type 2 diabetes and the potential mechanism.

Methods: Leptin receptor-deficient diabetic (db/db) and nondiabetic (db/m) mice underwent running treadmill exercise for 8 weeks, during which fecal microbiota transplantation (FMT) was parallelly performed from exercise-trained to sedentary diabetic (db/db) mice.

View Article and Find Full Text PDF

MOTS-c mimics remote ischemic preconditioning in protecting against lung ischemia-reperfusion injury by alleviating endothelial barrier dysfunction.

Free Radic Biol Med

January 2025

Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China,214023. Electronic address:

Remote ischemic preconditioning (RIPC) induces the expression of unidentified protective cytokines that mitigate lung ischemia-reperfusion injury (LIRI). This study hypothesizes that MOTS-c, a mitokine with potent protective effects against mitochondrial damage, contributes to RIPC-mediated protection by alleviating endothelial barrier dysfunction. In human lung transplantation patients, serum levels of MOTS-c significantly decreased following IR injury but were markedly increased when RIPC was performed prior to transplantation.

View Article and Find Full Text PDF

The vascular network, uniquely sensitive to mechanical changes, translates biophysical forces into biochemical signals for vessel function. This process relies on the cell's architectural integrity, enabling uniform responses to physical stimuli. Recently, the nuclear envelope (NE) has emerged as a key regulator of vascular cell function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!