Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transfer learning using a pre-trained model with the ImageNet database is frequently used when obtaining large datasets in the medical imaging field is challenging. We tried to estimate the value of deep learning for facial US images by assessing the classification performance for facial US images through transfer learning using current representative deep learning models and analyzing the classification criteria. For this clinical study, we recruited 86 individuals from whom we acquired ultrasound images of nine facial regions. To classify these facial regions, 15 deep learning models were trained using augmented or non-augmented datasets and their performance was evaluated. The F-measure scores average of all models was about 93% regardless of augmentation in the dataset, and the best performing model was the classic model VGGs. The models regarded the contours of skin and bones, rather than muscles and blood vessels, as distinct features for distinguishing regions in the facial US images. The results of this study can be used as reference data for future deep learning research on facial US images and content development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526737 | PMC |
http://dx.doi.org/10.1038/s41598-022-20969-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!