Leveraging family history in genetic association analyses of binary traits.

BMC Genomics

Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center, School of Public Health, Houston, TX, USA.

Published: October 2022

Background: Considering relatives' health history in logistic regression for case-control genome-wide association studies (CC-GWAS) may provide new information that increases accuracy and power to detect disease associated genetic variants. We conducted simulations and analyzed type 2 diabetes (T2D) data from the Framingham Heart Study (FHS) to compare two methods, liability threshold model conditional on both case-control status and family history (LT-FH) and Fam-meta, which incorporate family history into CC-GWAS.

Results: In our simulation scenario of trait with modest T2D heritability (h = 0.28), variant minor allele frequency ranging from 1% to 50%, and 1% of phenotype variance explained by the genetic variants, Fam-meta had the highest overall power, while both methods incorporating family history were more powerful than CC-GWAS. All three methods had controlled type I error rates, while LT-FH was the most conservative with a lower-than-expected error rate. In addition, we observed a substantial increase in power of the two familial history methods compared to CC-GWAS when the prevalence of the phenotype increased with age. Furthermore, we showed that, when only the phenotypes of more distant relatives were available, Fam-meta still remained more powerful than CC-GWAS, confirming that leveraging disease history of both close and distant relatives can increase power of association analyses. Using FHS data, we confirmed the well-known association of TCF7L2 region with T2D at the genome-wide threshold of P-value < 5 × 10, and both familial history methods increased the significance of the region compared to CC-GWAS. We identified two loci at 5q35 (ADAMTS2) and 5q23 (PRR16), not previously reported for T2D using CC-GWAS and Fam-meta; both genes play a role in cardiovascular diseases. Additionally, CC-GWAS detected one more significant locus at 13q31 (GPC6) reported associated with T2D-related traits.

Conclusions: Overall, LT-FH and Fam-meta had higher power than CC-GWAS in simulations, especially using phenotypes that were more prevalent in older age groups, and both methods detected known genetic variants with lower P-values in real data application, highlighting the benefits of including family history in genetic association studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526325PMC
http://dx.doi.org/10.1186/s12864-022-08897-8DOI Listing

Publication Analysis

Top Keywords

family history
16
association analyses
8
genetic variants
8
powerful cc-gwas
8
increase power
8
distant relatives
8
history
7
leveraging family
4
history genetic
4
association
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!