Background: The coronavirus disease 2019 seems to change antibiotic resistance pattern. Certain conditions in the Covid-19 era may be contributing to the rise of antimicrobial resistance (AMR). Due to the limited information on the impact of Covid-19 on antimicrobial resistance (AMR), the purpose of this research was to investigate the trend in antimicrobial resistance changes of E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in Hasheminezhad hospital. This hospital was a Corona center in Mashhad at the onset of this epidemic.

Methods: 1672 clinical samples were collected between January 21, 2020 and January 30, 2022from patients hospitalized at Hasheminezhad Hospital in Mashhad, Conventional microbiological procedures for identifying gram-negative bacteria and antibiotic susceptibility testing were used, according to the clinical and laboratory standards institute (CLSI) 2021. The two years of the pandemic, from the initial stage of the outbreak until the 6th peak, (January 2020 to and January 2022) were divided into 9 periods according to the seasons.

Results: Highest resistance rates were seen in E. coli (615 samples), K. pneumoniae (351 samples), P. aeruginosa (362 samples) and A. baumannii (344 samples) to Ampicillin (89.6%), Ampicillin (98%), Imipenem (91.8%), and Ceftazidime (94.6%), respectively. The largest change in antibiotic resistance was seen between Summer 2020 and Summer 2021 for K. pneumoniae with about a 30% rise in antibiotic resistance to Ceftriaxone.

Conclusions: All 4 species evaluated in this study, have shown rising AMR rates during the first year of the pandemic in the northeast of Iran. This study revealed that E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii strains in Northern Iran have a higher level of antibiotic resistance than what was measured in similar studies conducted before the pandemic. This will further restrict treatment choices and jeopardize global public health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526201PMC
http://dx.doi.org/10.1186/s13756-022-01159-yDOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
20
antimicrobial resistance
12
resistance
9
resistance changes
8
pandemic northeast
8
northeast iran
8
change antibiotic
8
resistance amr
8
coli aeruginosa
8
aeruginosa pneumoniae
8

Similar Publications

Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii.

Sci Rep

January 2025

Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.

In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.

View Article and Find Full Text PDF

Background: Nontuberculous mycobacteria (NTM) are emerging pathogens responsible for increasing skin and soft tissue infections (SSTIs) globally. However, the diagnosis and treatment of NTM SSTIs face significant challenges due to the lack of standardized guidelines. This study reviewed the clinical characteristics, diagnostic challenges, and treatment outcomes of NTM SSTIs in a large cohort from a tertiary referral center in Beijing, China.

View Article and Find Full Text PDF

Citrus maxima extract-coated versatile gold nanoparticles display ROS-mediated inhibition of MDR-Pseudomonas aeruginosa and cancer cells.

Bioorg Chem

January 2025

CSIR- Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

The expanding prevalence of microbial resistance to conventional treatments has triggered a race to develop alternative/improved strategies to combat drug-resistant microorganisms in an efficient manner. Here, the lethal impact of the biosynthesized gold nanoparticles (AuNPs) against multi-drug resistant (MDR) bacteria has been elucidated. AuNPs, synthesized from the extracts of the fruit, leaf and peel of the Citrus maxima plant, were physicochemically characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), electron microscopy and spectroscopic techniques not only confirmed the production of AuNPs of size below 100 nm but also identified the phytochemicals adsorbed onto the surface of NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!