Aggregating-agent-assisted surface-enhanced Raman spectroscopy-based detection of acrylamide in fried foods: A case study with potato chips.

Food Chem

State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China. Electronic address:

Published: March 2023

This study developed a simple, rapid, stable, and reliable technique for acrylamide (AAm) detection through surface-enhanced Raman scattering (SERS) on an AgNPs substrate with an aggregating agent. Specifically, the agglomeration effects of five types of salt solutions (NaCl, KCl, MgCl, NaSO, and MgSO) were investigated at different concentrations and optimized using an orthogonal experiment. The optimal amounts of the aggregating agent, analytes, and AgNPs were 4, 4, and 12 μL, respectively. A linear relationship (peak area I = 7.4197x + 5984.8, R = 0.9971) between the characteristic peak area and AAm concentration was established in the range of 10 to 500 μg/L, and the LOD was 2.5 μg/L. The recoveries and relative standard deviations in the analysis of potato chips samples were 94.67 %-117.50 % and 8.43 %-12.29 %, respectively. The results of the proposed method were consistent with those obtained by LC-MS/MS method. This study demonstrated that SERS has excellent potential for application in the qualitative and quantitative analyses of AAm in fried foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.134377DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
fried foods
8
potato chips
8
aggregating agent
8
peak area
8
aggregating-agent-assisted surface-enhanced
4
raman spectroscopy-based
4
spectroscopy-based detection
4
detection acrylamide
4
acrylamide fried
4

Similar Publications

Cancer diagnostics often faces challenges, such as invasiveness, high costs, and limited sensitivity for early detection, emphasizing the need for improved approaches. We present a surface-enhanced Raman scattering (SERS)-based platform leveraging inverted pyramid SU-8 nanostructured substrates fabricated via nanoimprint lithography. These substrates, characterized by sharp apices and edges, are further functionalized with (3-aminopropyl)triethoxysilane (APTES), enabling the uniform self-assembly of AuNPs to create a highly favorable configuration for enhanced SERS analysis.

View Article and Find Full Text PDF

A simply synthesized, silver ions-doped porous gold microparticles-based SERS aptamer sensor for ultrasensitive and broad-range quantitative detection of IL-6.

Anal Chim Acta

January 2025

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.

Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Development of a portable SERS tool to evaluate the effectiveness of washing methods to remove pesticide residue from fruit surface.

Anal Chim Acta

January 2025

Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA; Materials Engineering and Science Program, State University of New York at Binghamton, Binghamton, NY, 13902, USA. Electronic address:

Background: Pesticides are widely used in agriculture to control pests and enhance crop yields. However, post-harvest, there are growing concerns about the potential health risks posed by pesticide residues on produce surfaces. Analyzing these residues is challenging due to their typically low concentrations and the potential interference from the complex matrix of the produce's surface.

View Article and Find Full Text PDF

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

Surface-Enhanced Raman Scattering (SERS)-based biosensors for advanced extracellular vesicle detection: A review.

Anal Chim Acta

January 2025

School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China. Electronic address:

Background: Extracellular Vesicles (EVs), as nano-scale vesicles rich in biological information, hold an indispensable status in the biomedical field. However, due to the intrinsic small size and low abundance of EVs, their effective detection presents significant challenges. Although various EV detection techniques exist, their sensitivity and ease of operation still need enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!