Structure and activity of native and thiolated α-chymotrypsin adsorbed onto gold nanoparticles.

Colloids Surf B Biointerfaces

Department of Chemistry, Illinois State University, Normal, IL 61790, United States. Electronic address:

Published: December 2022

A detailed understanding of protein-nanoparticle interactions is critical to realize the full potential of bioconjugate-enabled technologies. Parameters that lead to conformational changes in protein structure upon adsorption must be identified and controlled to mitigate loss of biological function. We hypothesized that the installation of thiol functional groups on a protein will facilitate robust adsorption to gold nanoparticles (AuNPs) and prevent protein unfolding to achieve thermodynamic stability. Here we investigated the adsorption behavior of α-chymotrypsin (ChT) and a thiolated analog of α-chymotrypsin (T-ChT) with AuNPs. ChT, which does not present any free thiols, was modified with 2-iminothiolane (Traut's reagent) to synthesize T-ChT consisting of two free thiols. Protein adsorption to AuNPs was monitored with dynamic light scattering and UV-vis spectrophotometry, and fluorescence spectra were acquired to assess changes in protein structure induced by interaction with the AuNP. The biological function of ChT, T-ChT, and respective bioconjugates were compared using a colorimetric enzymatic assay. The thiolated analog exhibited a greater affinity for the AuNP than the unmodified ChT, as determined from adsorption isotherms. The ChT protein formed a soft protein corona in which the enzyme denatures with prolonged exposure to AuNPs and, subsequently, lost enzymatic function. Conversely, the T-ChT formed a robust hard corona on the AuNP and retained structure and function. These data support the hypothesis, provide further insight into protein-AuNP interactions, and identify a simple chemical approach to synthesize robust and functional conjugates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.112867DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
changes protein
8
protein structure
8
biological function
8
thiolated analog
8
free thiols
8
protein
7
adsorption
5
cht
5
structure
4

Similar Publications

Ultrabright aggregation-induced materials for the highly sensitive detection of Ag and T-2 toxin.

Food Chem

January 2025

State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Toxic-induced cerebellar syndrome (TOICS) poses substantial neurological challenges, given its diverse causes and complex manifestations. Gold nanoparticles (AuNPs) have gained significant attention owing to enhanced biocompatibility for therapeutic interventions. We aimed to investigate the impacts of AuNPs on cerebellar cytomolecular, immunohistochemical and ultrastructural alterations in the context of phenytoin-experimentally induced TOICS.

View Article and Find Full Text PDF

Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.

View Article and Find Full Text PDF

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!