Automated reconstruction of the initial distribution of laser accelerated ion beams from radiochromic film (RCF) stacks.

Rev Sci Instrum

Technische Universität Darmstadt, Institut für Teilchenbeschleunigung und Elektromagnetische Felder (TEMF), Schlossgartenstr. 8, 64289 Darmstadt, Germany.

Published: September 2022

Radiochromic film (RCF) stacks are the most commonly used diagnostic of laser accelerated ion beams at Gesellschaft für Schwerionenforschung, Darmstadt (GSI) and at other laboratories. So far, the evaluation of the stacks is performed using manual input for the deposited energy determination. This is usually a tedious task and introduces uncertainty in the resulting ion energy spectrum and also in the corresponding angular distribution. An automated procedure is especially important if larger data sets, containing multiple laser shots, are investigated. Here, we describe an automated procedure for the evaluation of digitized RCF stacks. RCF stacks obtained at GSI's PHELIX laser system are evaluated as a test case. A validation of parts of the procedure is performed on generated input data.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0094105DOI Listing

Publication Analysis

Top Keywords

rcf stacks
16
laser accelerated
8
accelerated ion
8
ion beams
8
radiochromic film
8
film rcf
8
automated procedure
8
stacks
5
automated reconstruction
4
reconstruction initial
4

Similar Publications

Reductive catalytic fractionation (RCF) is a promising method to extract and depolymerize lignin from biomass, and bench-scale studies have enabled considerable progress in the past decade. RCF experiments are typically conducted in pressurized batch reactors with volumes ranging between 50 and 1000 mL, limiting the throughput of these experiments to one to six reactions per day for an individual researcher. Here, we report a high-throughput RCF (HTP-RCF) method in which batch RCF reactions are conducted in 1 mL wells machined directly into Hastelloy reactor plates.

View Article and Find Full Text PDF

Proton Bragg curve and energy reconstruction using an online scintillator stack detector.

Rev Sci Instrum

July 2023

ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Dolni Brezany, Czech Republic.

Real-time measurement and characterization of laser-driven proton beams have become crucial with the advent of high-repetition-rate laser acceleration. Common passive diagnostics such as radiochromic film (RCF) are not suitable for real-time operation due to time-consuming post-processing; therefore, a novel approach is needed. Various scintillator-based detectors have recently gained interest as real-time substitutes to RCF-thanks to their fast response for a wide range of dose deposition rates.

View Article and Find Full Text PDF

Background: In the United Kingdom, Emergency Departments (EDs) are under significant pressure due to an ever-increasing number of attendances. Understanding how the capacity of other urgent care services and the health of a population may influence ED attendances is imperative for commissioners and policy makers to develop long-term strategies for reducing this pressure and improving quality and safety.

Methods: We developed a novel multi-granular stacked regression (MGSR) model using publicly available data to predict future mean monthly ED attendances within Clinical Commissioning Group regions in England.

View Article and Find Full Text PDF

Automated reconstruction of the initial distribution of laser accelerated ion beams from radiochromic film (RCF) stacks.

Rev Sci Instrum

September 2022

Technische Universität Darmstadt, Institut für Teilchenbeschleunigung und Elektromagnetische Felder (TEMF), Schlossgartenstr. 8, 64289 Darmstadt, Germany.

Radiochromic film (RCF) stacks are the most commonly used diagnostic of laser accelerated ion beams at Gesellschaft für Schwerionenforschung, Darmstadt (GSI) and at other laboratories. So far, the evaluation of the stacks is performed using manual input for the deposited energy determination. This is usually a tedious task and introduces uncertainty in the resulting ion energy spectrum and also in the corresponding angular distribution.

View Article and Find Full Text PDF

The use of hydrogen peroxide-releasing enzymes as a component to produce alternative and sustainable antimicrobial materials has aroused interest in the scientific community. However, the preparation of such materials requires an effective enzyme binding method that often involves the use of expensive and toxic chemicals. Here, we describe the development of an enzyme-based hydrogen peroxide-producing regenerated cellulose film (RCF) in which a cellobiohydrolase (CBHI) and a cellobiose dehydrogenase (CDHA) were efficiently adsorbed, 90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!