Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-precision x-ray imaging diagnostics of hotspot at the stagnation stage are essential for regulating implosion asymmetry and retrieving physical implosion parameters. With regard to 10-20 keV energy band imaging, existing diagnostic instruments such as Kirkpatrick-Baez microscopes and pinhole cameras are insufficient in terms of spatial resolution and collection efficiency. The situation is even worse when high-speed, time-resolved imaging diagnostics are performed by coupling framing cameras or line-of-sight imagers. This article presents the basic principles and optical system design of a 17.48 keV modified Wolter x-ray microscope, to resolve the problems encountered in high-energy imaging diagnostics. The proposed optical configuration offers a better spatial resolution, greater depth of field, and preliminary compliance with the requirements of high precision optical processing techniques. The spatial resolution is better than 1 µm in a field range ±150 µm, and is better than 3 µm in a total field of view ∼408 µm in diameter. The geometric solid angle is calculated as 3.0 × 10 sr and is estimated to be 1.2 × 10 sr, considering the reflectivity of the double mirrors. The proposed microscope is expected to effectively improve spatial resolution and signal-to-noise ratio for high-energy imaging diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0105015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!