Micro-fabricated components for cold atom sensors.

Rev Sci Instrum

SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom.

Published: September 2022

Laser cooled atoms have proven transformative for precision metrology, playing a pivotal role in state-of-the-art clocks and interferometers and having the potential to provide a step-change in our modern technological capabilities. To successfully explore their full potential, laser cooling platforms must be translated from the laboratory environment and into portable, compact quantum sensors for deployment in practical applications. This transition requires the amalgamation of a wide range of components and expertise if an unambiguously chip-scale cold atom sensor is to be realized. We present recent developments in cold-atom sensor miniaturization, focusing on key components that enable laser cooling on the chip-scale. The design, fabrication, and impact of the components on sensor scalability and performance will be discussed with an outlook to the next generation of chip-scale cold atom devices.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0101628DOI Listing

Publication Analysis

Top Keywords

cold atom
12
laser cooling
8
chip-scale cold
8
micro-fabricated components
4
components cold
4
atom sensors
4
sensors laser
4
laser cooled
4
cooled atoms
4
atoms proven
4

Similar Publications

The measurement of topological numbers is crucial in the research of topological systems. In this article, we propose a protocol for obtaining the topological number (specifically, winding numbers in this case) of an unknown one-dimensional (1D) two-band topological system by comparing it with a known topological system. We consider two 1D two-band topological systems and their Bloch wavefunction overlap and verify a theorem.

View Article and Find Full Text PDF

Traditional magneto-optical traps are often bulky and complex, which limits their application in portable and scalable technologies. In this study, we propose a method for generating cold atoms using a transmission-grating-based magneto-optical trap (TGMOT). This approach addresses the limitations of traditional magneto-optical traps using a transmission-grating design that simplifies the optical configuration, allowing for efficient atom capture with a single incident beam.

View Article and Find Full Text PDF

Dynamic Covalent Sulfur-Selenium Rich Polymers via Inverse Vulcanization for High Refractive Index, High Transmittance, and UV Shielding Materials.

Macromol Rapid Commun

January 2025

College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.

Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.

View Article and Find Full Text PDF

Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in astrobiology. Despite the observed rich chemistry, the underlying molecular mechanisms responsible for molecular formation in such cold dilute areas are still not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the connection between d-wave superconductivity and stripe phases in high-temperature cuprate superconductors, revealing how anisotropic couplings can enhance critical temperatures.
  • Recent advancements in quantum simulators using ultracold atoms allow for the experimentation and observation of these phenomena in real-time at a detailed level.
  • The research presents evidence of stripe formation in a cold-atom Fermi-Hubbard simulator, showing attractive correlations between dopants and suggesting the presence of a precursor to the stripe phase, which involves complex charge and spin ordering.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!