Irregular easy axis reorientation features are observed in numerical simulations of the nanomagnet coupled to the Josephson junction. We study magnetization bifurcations and chaos that appear in this system due to the interplay of superconductivity and magnetism. The bifurcation structure of magnetization under the variation of Josephson to magnetic energy ratio as a control parameter demonstrates several precessional motions that are related to chaotic behavior and orbits with different periodicities in the ferromagnetic resonance region. The effect of an external periodic signal on the bifurcation structure is also investigated. The results demonstrate high-frequency modes of a periodic motion and a chaotic response near resonance. Far from the ferromagnetic resonance, we observe a quasiperiodic behavior. The obtained results explain the irregular reorientation of the easy axis and the transitions between different types of motion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0095009 | DOI Listing |
Plast Reconstr Surg Glob Open
January 2025
From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School Hospital, Tokyo, Japan.
Background: Soft tissue defects on the palm side of the thumb can be effectively covered by using the radial midpalmar (RMP) flap, which is usually harvested as a pedicled flap. However, previous anatomical studies on this flap are limited. We analyzed multidetector-row computed tomography angiograms of the radial midpalm of hands to more precisely characterize the 3-dimensional anatomical structure of the perforators in living patients.
View Article and Find Full Text PDFBull Math Biol
January 2025
Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Rd, Oxford, Oxfordshire, OX2 6GG, UK.
We analyse mathematical models of blood flow in two simple vascular networks in order to identify structural features that lead to the formation of multiple equilibria. Our models are based on existing rules for blood rheology and haematocrit splitting. By performing bifurcation analysis on these simple network flow models, we identify a link between the changing flow direction in key vessels and the existence of multiple equilibria.
View Article and Find Full Text PDFIET Syst Biol
January 2025
Center for Computational Biology, Department of Computational Biology, IIIT-Delhi, New Delhi, India.
One of the challenges that beset modelling complex biological networks is to relate networks to function to dynamics. A further challenge is deciphering the cellular function and dynamics that can change drastically when the network edge is tinkered with by adding or removing it. To illustrate this, the authors took a well-studied three-variable Goodwin oscillatory motif with only a negative feedback loop.
View Article and Find Full Text PDFNat Commun
January 2025
Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan.
Background And Objective: Coughing events are eruptive sources of virus-laden droplets/droplet nuclei. These increase the risk of infection in susceptible individuals during airborne transmission. The oral cavity functions as an exit route for exhaled droplets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!