Situations arise where it is desirable to understand and estimate the radiation force on large smooth highly reflecting objects in water illuminated by beams of ultrasound. The approach examined here is to extend a formulation experimentally confirmed by Herrey [J. Acoust. Soc. Am. 27, 891-896 (1955)] for tilted reflecting surfaces in fluids that are modeled as being inviscid. The formulation applies Brillouin's analysis of the Langevin-like radiation force on objects in open containers. The specular reflection contributions to the radiation force of two slanted plane waves incident on a rigid cylinder is approximated and compared with a full partial wave series (PWS) solution for an infinitely long cylinder in an inviscid fluid. The availability of the PWS solution gives support to approximations introduced in the geometric analysis, provided ka (the wave number-cylinder-radius product) is sufficiently large. The normalized force projection is plotted as a function of the wave slant angle relative to the symmetry axis. Deviations between the specular and PWS analysis for ka of 7.5 are diminished for ka of 15 and 25. A region of enhanced force associated with constructive interference narrows with increasing ka.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0013828 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Although the role of low-level laser therapy (LLLT) and human adipose-derived stem cells (hADSC) in accelerating diabetic wound healing has been proven, their synergistic effect is still debated. This study aimed to evaluate the individual and combined effects of LLLT and hADSC on wound healing and on biomechanical parameters in type 2 diabetic rabbits. In this experimental study, 40 rabbits with type 2 diabetes (induced by streptozotocin (STZ)) were included.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces.
View Article and Find Full Text PDFLasers Med Sci
January 2025
University of Zurich, Zurich, Switzerland.
The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.
View Article and Find Full Text PDFNat Astron
November 2024
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA.
The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus's magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!