Efficient and robust photocatalysts for environmental pollutants removal with outstanding stability have great significance. Herein, we report a kind of three dimensional (3D) photocatalyst presented as Z-scheme heterojunction, which combining TiO and ZnCdS with graphene aerogel to contrast TiO-ZnCdS graphene aerogel (TSGA, x=0.5) through a moderate hydrothermal process. The as-prepared Z-scheme TSGA was used to remove aqueous Cr(VI) via a synergistic effect of adsorption and visible light photocatalysis. The adsorption equilibrium can be reached about 40 min, then after about 30 min irradiation under visible light (wavelength (λ) > 420 nm) the removal rate of Cr(VI) almost reached 100%, which is much better than the performance of pristine TiO and ZnCdS, as well as TiO graphene aerogel (TGA) and ZnCdS graphene aerogel (SGA). The virulent Cr(VI) was reduced to Cr(III) with hypotoxicity after photocatalysis on TSGA, meanwhile the as-synthesized TSGA presented a good stability and reusability. The reduced graphene oxide (rGO) sheets between TiO and ZnCdS played a role as charge transfer mediator, promoting the photoinduced electrons transfer and photocatalysis ability of TSGA was enhanced significantly. Hence, such photocatalyst exhibits a potential application on removing heavy metals with high efficiency and stability from polluted aqueous environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2021.09.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!