NirS-type denitrifying bacteria in aerobic water layers of two drinking water reservoirs: Insights into the abundance, community diversity and co-existence model.

J Environ Sci (China)

Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

Published: February 2023

The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems. The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial community harbored in aerobic water layers of drinking water reservoirs have not been studied well. In this study, quantitative polymerase chain reaction (qPCR) and Illumina Miseq sequencing were employed to explore the nirS gene abundance and denitrifying bacterial community structure in two drinking water reservoirs. The overall results showed that the water quality parameters in two reservoirs had obvious differences. The qPCR results suggested that nirS gene abundance ranged from (2.61 ± 0.12) × 10 to (3.68 ± 0.16) × 10 copies/mL and (3.01 ± 0.12) × 10 to (5.36 ± 0.31) × 10 copies/mL in Jinpen and Lijiahe reservoirs, respectively. The sequencing results revealed that Paracoccus sp., Azoarcus sp., Dechloromonas sp. and Thauera sp. were the dominant genera observed. At species level, Cupriavidus necator, Dechloromonas sp. R-28400, Paracoccus denitrificans and Pseudomonas stutzeri accounted for more proportions in two reservoirs. More importantly, the co-occurrence network analysis demonstrated that Paracoccus sp. R-24615 and Staphylococcus sp. N23 were the keystone species observed in Jinpen and Lijiahe reservoirs, respectively. Redundancy analysis indicated that water quality (particularly turbidity, water temperature, pH and Chlorophyll a) and sampling time had significant influence on the nirS-type denitrifying bacterial community in both reservoirs. These results will shed new lights on exploring the dynamics of nirS-type denitrifying bacteria in aerobic water layers of drinking water reservoirs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2021.10.013DOI Listing

Publication Analysis

Top Keywords

nirs-type denitrifying
20
drinking water
20
water reservoirs
16
denitrifying bacterial
16
bacterial community
16
aerobic water
12
water layers
12
layers drinking
12
nirs gene
12
gene abundance
12

Similar Publications

Community Assembly Mechanisms of nirK- and nirS-type Denitrifying Bacteria in Sediments of Eutrophic Lake Taihu, China.

Curr Microbiol

December 2024

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China.

Denitrifying bacteria, particularly nirK- and nirS-type, are functionally equivalent and could occupy different niches, but their community assembly mechanisms and responses to environmental heterogeneity are poorly understood in eutrophic lakes. In this study, we investigated the community assembly mechanisms of nirK- and nirS-type denitrifying bacteria and clarified their responses to sediments environmental factors in Lake Taihu, China. The quantitative real-time PCR and Illumina HiSeq-based sequencing revealed that the abundance and composition of two types of denitrifying bacterial communities varied among different sites in the sediments of Lake Taihu.

View Article and Find Full Text PDF

Introduction: Nitrogen (N) and phosphorus (P) enrichment due to anthropogenic activities can significantly affect soil N transformations in forest ecosystems. However, the effects of N and P additions on nitrification and denitrification processes in plantations, and economically important forest type in China, remain poorly understood.

Methods: This study investigated the responses of soil nitrification and denitrification rates, as well as the abundances of nitrifiers and denitrifiers, to different levels of N and P additions in a 6-year nutrient addition experiment in a plantation.

View Article and Find Full Text PDF

The nitrogen cycling process in alpine wetlands is profoundly affected by precipitation changes, yet the dynamic response mechanism of denitrifiers to long-term precipitation shifts in the alpine wetland of the Qinghai-Tibet Plateau remains enigmatic. Utilizing high-throughput sequencing analysis of nirS-type functional genes, this study delved into the dynamic response mechanism of nirS-type denitrifiers to precipitation changes in the alpine wetland of Qinghai Lake. The findings revealed that nirS-type denitrifiers in the alpine wetland of Qinghai Lake were primarily Proteobacteria, and Alpha diversity exhibited a negative correlation with the precipitation gradient, with deterministic processes predominating in the community assembly of denitrifying microbes.

View Article and Find Full Text PDF

Species pool and local assembly processes drive β diversity of ammonia-oxidizing and denitrifying microbial communities in rivers along a latitudinal gradient.

Mol Ecol

October 2024

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.

Both regional species pool and local community assembly mechanism drive the microbial diversity patterns across geographical gradients. However, little has been done to separate their effects on the β diversity patterns of microbial communities involved in nitrogen (N) cycling in river ecosystems. Here, we use high-throughput sequencing of the archaeal amoA, bacterial amoA, nirK, and nirS genes, null model, and neutral community model to distinguish the relative importance of species pool and local assembly processes for ammonia-oxidizing and denitrifying communities in river wetlands along a latitudinal gradient in eastern China.

View Article and Find Full Text PDF

Insights into the evolutionary and ecological adaption strategies of nirS- and nirK-type denitrifying communities.

Mol Ecol

September 2024

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Zhuhai, China.

Denitrification is a crucial process in the global nitrogen cycle, in which two functionally equivalent genes, nirS and nirK, catalyse the critical reaction and are usually used as marker genes. The nirK gene can function independently, whereas nirS requires additional genes to encode nitrite reductase and is more sensitive to environmental factors than nirK. However, the ecological differentiation mechanisms of those denitrifying microbial communities and their adaptation strategies to environmental stresses remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!