Microplastics (<5 mm) are a ubiquitous marine pollutant which are highly bioavailable to marine organisms across all trophic levels. Marine predators are especially vulnerable to microplastic pollution through direct and indirect ingestion (e.g., trophic transfer) due to their high trophic position. In particular, oceanic islands are more susceptible to plastic accumulation, increasing the relative number of microplastics in the environment that are available for consumption. The dynamics of microplastic accumulation in marine predators inhabiting remote islands, however, is sparsely documented. Here we describe microplastic exposure in the Critically Endangered Mediterranean monk seal (Monachus monachus) from the Madeira archipelago (Northeast Atlantic) using scat-based analysis. Microplastics were recovered from 18 scat samples collected between 2014-2021 and were characterized to the polymer level using Fourier-Transform Infrared (u-FTIR) spectroscopy. A total of 390 microplastic particles were recovered, ranging between 0.2-8.6 particles g dry weight (mean 1.84 ± 2.14 particles g) consisting mainly of fragments (69 %) of various sizes and polymer composition (e.g., PE, PET, PS). Microplastic prevalence (100 % of samples analysed) was higher than what has been previously recorded using scat-based analysis in other pinniped species. Our results suggest that the levels of microplastic pollution in the coastal food-web in the Madeira archipelago are relatively high, placing higher-trophic level organisms at increased risk of microplastic consumption, including humans. This study provides the first insights into microplastic exposure to Madeira's monk seals that may contribute to future management decisions for the species and their long-term survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.159077 | DOI Listing |
Environ Toxicol Chem
January 2025
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836 Japan.
Polymer-coated fertilizers, widely used in rice cultivation in Japan, contribute to reactive nitrogen management and agricultural productivity but are a source of microplastics in the environment. Here, we investigated microplastics derived from polymer-coated fertilizer (microcapsule) runoff in Japanese paddy fields at 38 sites to quantitatively assess the behavior of microcapsules in paddy fields, and to estimate the total amount of runoff and accumulation in Japan. We also examined the factors causing variations in the amount of runoff among paddy fields.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.
The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands. Electronic address:
Numerous reviews have consistently highlighted the shortcomings of studies evaluating the effects of microplastics (MP), with many of the issues identified in 2016 still relevant in 2024. Here, we summarize the current knowledge on MP effect testing, compare guidelines, and provide an overview of risk assessments conducted at both single species and community levels. We discuss standard test materials, MP characteristics, and mechanisms explaining effects.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, PR China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:
In recent years, the toxicity of microplastics (MPs) in combination with heavy metals, particularly the influence of varying microplastic sizes on their toxic effects, has attracted widespread attention. In this study, red swamp crayfish (Procambarus clarkia) were exposed to MPs of two particle sizes (S-MPs: 5 μm, 1 mg/L; and L-MPs: 100 μm, 1 mg/L) and Cu (5 mg/L) individually or in combination for 96 h. The accumulation patterns of MPs were as follows: gills > intestines > hepatopancreas > muscles.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:
Microplastics are pervasive environmental contaminants found across diverse ecosystems, inducing toxic effects in a wide range of organisms. However, the neurotoxic effects of thermally degraded polystyrene (T-PS) and its underlying mechanisms remain poorly unexplored. In this study, Caenorhabditis elegans was exposed to environmentally relevant concentrations of T-PS (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!