Antibiotics are an essential tool for perinatal care. While antibiotics can play a life-saving role for both parents and infants, they also cause collateral damage to the beneficial bacteria that make up the host gut microbiota. This is especially true for infants, whose developing gut microbiota is uniquely sensitive to antibiotic perturbation. Emerging evidence suggests that disruption of these bacterial populations during this crucial developmental window can have long-term effects on infant health and development. Although most current studies have focused on microbial disruptions caused by direct antibiotic administration to infants or prenatal exposure to antibiotics administered to the mother, little is known about whether antibiotics in human milk may pose similar risks to the infant. This review surveys current data on antibiotic transfer during lactation and highlights new methodologies to assess drug transfer in human milk. Finally, we provide recommendations for future work to ensure antibiotic use in lactating parents is safe and effective for both parents and infants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763576 | PMC |
http://dx.doi.org/10.1002/phar.2732 | DOI Listing |
Pediatr Res
January 2025
Department of Pediatrics, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510623, China.
Although the role of breast milk in promoting neonatal growth and maintaining intestinal homeostasis is well established, underlying mechanisms by which it protects the intestine from damage remain to be elucidated. Human breast milk-derived exosomes (HMDEs) are newly discovered active signaling vesicles with a diameter of 30-150 nm, which are key carriers of biological information exchange between mother and child. In addition, due to their ability to cross the gastrointestinal barrier, low immunogenicity, good biocompatibility and stability, HMDEs play an important role in regulating intestinal barrier integrity in newborns.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.
View Article and Find Full Text PDFBMJ Open Qual
January 2025
Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, Maharashtra, India.
Background: Human milk banks (HMBs) offer the best feed for neonates after mother's own milk (MOM), especially when MOM is insufficient. Although HMBs are founded on standard protocols, contamination and wastage of milk due to positive milk cultures remain a problem. Present study was planned as a quality improvement (QI) initiative to reduce culture rates at the HMB.
View Article and Find Full Text PDFNutrients
January 2025
School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
Background: Whilst it is inconvenient and time-intensive, predominantly (PP) and exclusively pumping (EP) mothers rely on breast expression to provide milk for their infants and to ensure continued milk supply, yet these populations are poorly understood.
Methods: We assessed and characterised Western Australian PP mothers ( = 93) regarding 24 h milk production (MP) and infant milk intake and demographics, perinatal complications and breastfeeding difficulties, the frequencies of which were compared with published general population frequencies. Pumping efficacy and milk flow parameters during a pumping session in PP mothers ( = 32) were compared with those that pump occasionally (reference group, = 60).
Nutrients
January 2025
Department of Biology, California State University, Northridge, CA 91330, USA.
Background: Maternal obesity may contribute to childhood obesity in a myriad of ways, including through alterations of the infant gut microbiome. For example, maternal obesity may contribute both directly by introducing a dysbiotic microbiome to the infant and indirectly through the altered composition of human milk that fuels the infant gut microbiome. In particular, indigestible human milk oligosaccharides (HMOs) are known to shape the composition of the infant gut microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!