Insights into the sperm chromatin and implications for male infertility from a protein perspective.

WIREs Mech Dis

Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.

Published: March 2023

Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wsbm.1588DOI Listing

Publication Analysis

Top Keywords

sperm chromatin
16
chromatin
8
chromatin compaction
8
reproductive system
8
system diseases
8
sperm
7
insights sperm
4
chromatin implications
4
implications male
4
male infertility
4

Similar Publications

Objectives: Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage.

View Article and Find Full Text PDF

Association of NOX5 Expression with Sperm Activity and Motility in Pathospermic Infertile Men.

J Reprod Infertil

January 2024

Department of Histology and Embryology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey.

Background: The newest NOX isoform, NOX5, has been found in mammalian spermatozoa. Many physiological and pathological situations in spermatozoa are mediated by reactive oxygen species (ROS). NOX5 is the main source of ROS in spermatozoa.

View Article and Find Full Text PDF

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Ethylene glycol (EG) has been employed as a cryoprotectant for many years in mammalian semen cryopreservation but not assessed for birds except for its recently illustrated beneficial effects on commercial chicken lines. The Indian red jungle fowl is facing trouble in its native range due to human encroachment. Therefore, the present study was designed to elucidate the cryoprotective effect of different EG concentrations (5%, 10%, 15%, and 20%) on frozen Indian red jungle fowl semen.

View Article and Find Full Text PDF

Argonaute proteins are best known for their role in microRNA-mediated post-transcriptional gene silencing. Here, we show that AGO3 and AGO4, but not AGO2, localize to the sex chromatin of pachytene spermatocytes where they are required for transcriptional silencing of XY-linked genes, known as Meiotic Sex Chromosome Inactivation (MSCI). Using an mouse, we show that AGO3 and AGO4 are key regulators of spermatogenesis, orchestrating expression of meiosis-related genes during prophase I while maintaining silencing of spermiogenesis genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!