In this Letter, photonic crystal (PC) waveguide-based interferometer design is studied; spectral as well as temporal analyses have been conducted. Intentional structural modifications inside the interferometer trigger Fano resonances, allowing for extraordinary optical effects, such as enhanced beam recirculation and mode-order conversion. The proposed Mach-Zehnder-Fano interferometer is compatible with conventional silicon-on-insulator (SOI) technology and consists of two arms: the lower arm, with no point defects, creates continuum states, whereas the upper arm, including a Fano defect, creates discrete states. The PC waveguide channel with intentional point defects, which possess effective discreteness, creates the required phase retardation of the propagating beam, enabling Fano resonance excitations. Such a type of PC waveguide-based interferometer allows for the realization of compact mode-order converters with a broad 3 dB-bandwidth of 65 nm (at the wavelength range of λ = 1517 - 1582 nm) and efficient optical switching as well as sensing capabilities, operating at optical telecommunication bands, favoring inherent beam recirculation characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.472998DOI Listing

Publication Analysis

Top Keywords

beam recirculation
12
recirculation mode-order
8
mode-order conversion
8
waveguide-based interferometer
8
point defects
8
beam
4
conversion compact
4
compact mach-zehnder-fano
4
mach-zehnder-fano interferometers
4
interferometers letter
4

Similar Publications

Pulse-by-pulse transient thermal deformation in crystal optics under high-repetition-rate FEL.

J Synchrotron Radiat

January 2025

LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

Time-domain modeling of the thermal deformation of crystal optics can help define acceptable operational ranges across the pulse-energy repetition-rate phase space. In this paper, we have studied the transient thermal deformation of a water-cooled diamond crystal for a cavity-based X-ray free-electron laser (CBXFEL), either an X-ray free-electron laser oscillator (XFELO) or a regenerative amplifier X-ray free-electron laser (RAFEL), by numerical simulations including finite-element analysis and advanced data processing. Pulse-by-pulse transient thermal deformation of a 50 µm-thick diamond crystal has been performed with X-ray pulse repetition rates between 50 kHz and 1 MHz.

View Article and Find Full Text PDF

Background: 2D angiographic parametric imaging (API) quantitatively extracts imaging biomarkers related to contrast flow and is conventionally applied to 2D digitally subtracted angiograms (DSA's). In the interventional suite, API is typically performed using 1-2 projection views and is limited by vessel overlap, foreshortening, and depth-integration of contrast motion.

Purpose: This work explores the use of a pathlength-correction metric to overcome the limitations of 2D-API: the primary objective was to study the effect of converting 3D contrast flow to projected contrast flow using a simulated angiographic framework created with computational fluid dynamics (CFD) simulations, thereby removing acquisition variability.

View Article and Find Full Text PDF

ICARUS at the Fermilab Short-Baseline Neutrino program: initial operation.

Eur Phys J C Part Fields

June 2023

Fermi National Accelerator Laboratory, Batavia, IL 60510 USA.

The ICARUS collaboration employed the 760-ton T600 detector in a successful 3-year physics run at the underground LNGS laboratory, performing a sensitive search for LSND-like anomalous appearance in the CERN Neutrino to Gran Sasso beam, which contributed to the constraints on the allowed neutrino oscillation parameters to a narrow region around 1 eV. After a significant overhaul at CERN, the T600 detector has been installed at Fermilab. In 2020 the cryogenic commissioning began with detector cool down, liquid argon filling and recirculation.

View Article and Find Full Text PDF

In this Letter, photonic crystal (PC) waveguide-based interferometer design is studied; spectral as well as temporal analyses have been conducted. Intentional structural modifications inside the interferometer trigger Fano resonances, allowing for extraordinary optical effects, such as enhanced beam recirculation and mode-order conversion. The proposed Mach-Zehnder-Fano interferometer is compatible with conventional silicon-on-insulator (SOI) technology and consists of two arms: the lower arm, with no point defects, creates continuum states, whereas the upper arm, including a Fano defect, creates discrete states.

View Article and Find Full Text PDF

Comparative analysis of recirculating and collimating cesium ovens.

Rev Sci Instrum

April 2022

Orsay Physics, ZAC ST Charles, 3ème Avenue, No. 95, 13710 Fuveau, France.

We have performed a study of several cesium oven designs. A comparison between recirculating (or sticking-wall) and collimating (or re-emitting-wall) ovens is made in order to extract the most efficient design in terms of beam brightness. Unfortunately, non-reproducible behaviors have been observed, and the most often observed output flux is similar to the sticking-wall case, which is the lowest theoretical value of the two cases, with a beam brightness close to 10 at.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!