We demonstrate a method to image an object using a self-probing approach based on semiconductor high-harmonic generation. On the one hand, ptychography enables high-resolution imaging from the coherent light diffracted by an object. On the other hand, high-harmonic generation from crystals is emerging as a new source of extreme-ultraviolet ultrafast coherent light. We combine these two techniques by performing ptychography measurements with nanopatterned crystals serving as the object as well as the generation medium of the harmonics. We demonstrate that this strong field in situ approach can provide structural information about an object. With the future developments of crystal high harmonics as a compact short-wavelength light source, our demonstration can be an innovative approach for nanoscale imaging of photonic and electronic devices in research and industry.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.471113DOI Listing

Publication Analysis

Top Keywords

high-harmonic generation
12
semiconductor high-harmonic
8
coherent light
8
self-probed ptychography
4
ptychography semiconductor
4
generation
4
generation demonstrate
4
demonstrate method
4
method image
4
object
4

Similar Publications

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

Non-Resonant Magnetic X-ray Scattering as a Probe of Ultrafast Molecular Spin-State Dynamics: An Ab Initio Theory.

J Chem Theory Comput

January 2025

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • Advanced techniques like high harmonic generation and X-ray free-electron lasers have enabled the study of ultrafast electron and spin dynamics on extremely short timescales.
  • The authors propose using magnetic X-ray scattering (MXS) to measure molecular spin-state dynamics and outline a protocol for simulating MXS patterns using multiconfigurational quantum chemistry.
  • The method is validated through simulations of spin-flip dynamics in the TiCl molecule, showcasing MXS's ability to detect real-time spin-state changes and infer spatial characteristics of spin density from diffraction patterns.
View Article and Find Full Text PDF

We report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.

View Article and Find Full Text PDF

High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.

View Article and Find Full Text PDF

Laser excitation of the 1-2 transition in singly-ionized helium.

Commun Phys

December 2024

LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.

Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!