Parkinson's disease (PD) and Multiple System Atrophy (MSA) are progressive and unremitting neurological diseases that are neuropathologically characterized by α-synuclein inclusions. Increasing evidence supports the aggregation of α-synuclein in specific brain areas early in the disease course, followed by the spreading of α-synuclein pathology to multiple brain regions. However, little is known about how the structure of α-synuclein fibrils influence its ability to seed endogenous α-synuclein in recipient cells. Here, we aggregated α-synuclein by seeding with homogenates of PD- and MSA-confirmed brain tissue, determined the resulting α-synuclein fibril structures by cryo-electron microscopy, and characterized their seeding potential in mouse primary oligodendroglial cultures. The combined analysis shows that the two patient material-amplified α-synuclein fibrils share a similar protofilament fold but differ in their inter-protofilament interface and their ability to recruit endogenous α-synuclein. Our study indicates that the quaternary structure of α-synuclein fibrils modulates the seeding of α-synuclein pathology inside recipient cells. It thus provides an important advance in the quest to understand the connection between the structure of α-synuclein fibrils, cellular seeding/spreading, and ultimately the clinical manifestations of different synucleinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525671PMC
http://dx.doi.org/10.1038/s42003-022-03948-yDOI Listing

Publication Analysis

Top Keywords

α-synuclein fibrils
20
α-synuclein
14
endogenous α-synuclein
12
structure α-synuclein
12
quaternary structure
8
fibrils modulates
8
modulates seeding
8
α-synuclein pathology
8
recipient cells
8
fibrils
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!