A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crowding results from optimal integration of visual targets with contextual information. | LitMetric

Crowding is the inability to recognize an object in clutter, usually considered a fundamental low-level bottleneck to object recognition. Here we advance and test an alternative idea, that crowding, like predictive phenomena such as serial dependence, results from optimizing strategies that exploit redundancies in natural scenes. This notion leads to several testable predictions: crowding should be greatest for unreliable targets and reliable flankers; crowding-induced biases should be maximal when target and flankers have similar orientations, falling off for differences around 20°; flanker interference should be associated with higher precision in orientation judgements, leading to lower overall error rate; effects should be maximal when the orientation of the target is near that of the average of the flankers, rather than to that of individual flankers. Each of these predictions were supported, and could be simulated with ideal-observer models that maximize performance. The results suggest that while crowding can affect object recognition, it may be better understood not as a processing bottleneck, but as a consequence of efficient exploitation of the spatial redundancies of the natural world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525686PMC
http://dx.doi.org/10.1038/s41467-022-33508-1DOI Listing

Publication Analysis

Top Keywords

object recognition
8
redundancies natural
8
crowding
5
crowding optimal
4
optimal integration
4
integration visual
4
visual targets
4
targets contextual
4
contextual crowding
4
crowding inability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!