Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Characterization and categorization of quantum correlations are both fundamentally and practically important in quantum information science. Although quantum correlations such as non-separability, steerability, and non-locality can be characterized by different theoretical models in different scenarios with either known (trusted) or unknown (untrusted) knowledge of the associated systems, such characterization sometimes lacks unambiguous to experimentalist. In this work, we propose the physical interpretation of nonlocal quantum correlation between two systems. In the absence of complete local description of one of the subsystems quantified by the local uncertainty relation, the correlation between subsystems becomes nonlocal. Remarkably, different nonlocal quantum correlations can be discriminated from a single uncertainty relation derived under local hidden state (LHS)-LHS model only. We experimentally characterize the two-qubit Werner state in different scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525634 | PMC |
http://dx.doi.org/10.1038/s41598-022-17540-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!