A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of hydantoin based Decaprenylphosphoryl-β-D-Ribose Oxidase (DprE1) inhibitors as antimycobacterial agents using computational tools. | LitMetric

AI Article Synopsis

  • Tuberculosis (TB) is a significant emerging infectious disease, and DprE1 is a key enzyme involved in its pathogen's cell wall synthesis, making it a target for drug development.
  • Multiple studies have identified various chemical compounds that inhibit DprE1, with this research presenting advanced modeling techniques (GA-MLR and 3D-QSAR) to predict and evaluate potential inhibitors.
  • The study discovered a promising candidate, ZINC12196803, which showed superior docking scores and binding energy compared to standard TB drugs, indicating potential for further development of effective DprE1 inhibitors.

Article Abstract

Tuberculosis (TB) is one of the emerging infectious diseases in the world. DprE1 (Decaprenylphosphoryl-β-D-ribose 2'-epimerase), an enzyme accountable for mycobacterial cell wall synthesis was the first drug gable target based on discoveries of inhibitors via HTS (high throughput screening). Since then, many literature reports have been published so far enlightening varieties of chemical scaffolds acting as inhibitors of DprE1. Herein, in our present study, we have developed statistically robust GA-MLR (genetic algorithm multiple linear regression), atom-based as well as field based-3D-QSAR models. Both atom-based as well as field based-3D-QSAR models (internally as well as externally validated) were obtained with robust Training set, R > 0.69 and Test set, Q > 0.50. We have also developed top ranked 5 point hypothesis AAAHR_1 among 14 CPHs (common pharmacophore hypotheses). We found that our dataset molecule had more docking score (XP mode = - 9.068 kcal/mol) than the standards isoniazid and ethambutol; when docked into binding pockets of enzyme 4P8C with Glide module. We further queried our best docked dataset molecule 151 for ligand based virtual screening using "SwissSimilarity" platform. Among 9 identified hits, we found ZINC12196803 had best binding energies and docking score (docking score = - 9.437 kcal/mol, MMGBSA dgBind = - 70.508 kcal/mol). Finally, our molecular dynamics studies for 1.2-100 ns depicts that these complexes are stable. We have also carried out in-silico ADMET predictions, Cardiac toxicity, 'SwissTargetPredictions' and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding energy calculations for further explorations of dataset as well as hit molecules. Our current studies showed that the hit molecule ZINC12196803 may enlighten the path for future developments of DprE1 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525719PMC
http://dx.doi.org/10.1038/s41598-022-20325-1DOI Listing

Publication Analysis

Top Keywords

dpre1 inhibitors
8
atom-based well
8
well field
8
field based-3d-qsar
8
based-3d-qsar models
8
dataset molecule
8
docking score
8
identification hydantoin
4
hydantoin based
4
based decaprenylphosphoryl-β-d-ribose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!