AI Article Synopsis

  • The study aimed to create and validate a radiomics model for assessing peritoneal cancer index (PCI) using preoperative CT scans in patients with peritoneal metastasis (PM).
  • A total of 163 cancer cases were analyzed across two cohorts, with features from CT scans analyzed to develop a radiomics model using support vector machine (SVM) and compare its effectiveness to traditional methods of PCI scoring.
  • Results showed that the radiomics model had a higher accuracy in predicting surgical PCI compared to CT-PCI, indicating it could be a valuable tool for personalizing treatment approaches for PM patients.

Article Abstract

Rationale And Objectives: The present work aimed to develop and validate a radiomics model for evaluating peritoneal cancer index (PCI) in peritoneal metastasis (PM) cases based on preoperative CT scans.

Materials And Methods: Pathologically confirmed pancreatic, colon, rectal, and gastric cancer cases with PM administered exploratory laparotomy in 2 different cohorts were retrospectively analyzed. Surgical PCIs (sPCIs) were confirmed by the surgery team, and CT-PCI scores were assessed by radiologists. Totally 63 and 27 cases in cohort 1 were assigned to the training and test groups, respectively. Then, 73 cases in cohort 2 were enrolled as an external validation set. Radiomics features were derived from the portal venous phase of preoperative abdominopelvic CT scans. Nineteen optimal features related to sPCI were finally selected. Support vector machine (SVM) was adopted for radiomics model generation. The associations of CT-PCI, radiomics PCI and sPCI were analyzed. The performances in distinguishing between low-sPCI (≤ 20) and high-sPCI (> 20) cases were also assessed by receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA).

Results: Both CT-PCI and radiomics PCI scores had positive associations with sPCI. The radiomics approach had higher agreement for detecting sPCI than CT-PCI. In addition, the radiomics model had enhanced diagnostic performance than CT-PCI (AUCs were 0.894, 0.822 and 0.810 in training, test and validation sets, respectively, vs 0.749, 0.678 and 0.693, respectively). The net reclassification index was 0.266. The usefulness of the proposed model was confirmed by DCA in an external validation set.

Conclusion: The present pilot study showed that the radiomics model based on preoperative abdominopelvic CT has increased agreement and diagnostic performance in detecting sPCI than CT-PCI in patients with PM, which could be used to optimize individualized treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2022.09.001DOI Listing

Publication Analysis

Top Keywords

radiomics model
20
model evaluating
8
evaluating peritoneal
8
peritoneal cancer
8
peritoneal metastasis
8
metastasis cases
8
radiomics
8
based preoperative
8
cases cohort
8
training test
8

Similar Publications

Although radiotherapy techniques are the primary treatment for head and neck cancer (HNC), they are still associated with substantial toxicity, and side effect. Machine learning (ML) based radiomics models for predicting toxicity mostly rely on features extracted from pre-treatment imaging data. This study aims to compare different models in predicting radiation-induced xerostomia and sticky saliva in both early and late stage of HNC patients using CT and MRI image features along with demographics and dosimetric information.

View Article and Find Full Text PDF

In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalised medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted.

View Article and Find Full Text PDF

Background: This study aimed to develop an automated algorithm to noninvasively distinguish gliomas from other intracranial pathologies, preventing misdiagnosis and ensuring accurate analysis before further glioma assessment.

Methods: A cohort of 1280 patients with a variety of intracranial pathologies was included. It comprised 218 gliomas (mean age 54.

View Article and Find Full Text PDF

Background: To accurately identify spread through air spaces (STAS) in clinical stage IA lung adenocarcinoma, our study developed a non-invasive and interpretable biomarker combining clinical and radiomics features using preoperative CT.

Methods: The study included a cohort of 1,325 lung adenocarcinoma patients from three centers, which was divided into four groups: a training cohort ( = 930), a testing cohort ( = 238), an external validation 1 cohort ( = 93), and 2 cohort ( = 64). We collected clinical characteristics and semantic features, and extracted radiomics features.

View Article and Find Full Text PDF

Background: Radiomics provides quantitative features of pulmonary nodules (PNs) which could aid lung cancer diagnosis, but medical image acquisition variability is an obstacle to clinical application. Acquisition effects may differ between radiomic features from benign vs. malignant PNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!