The effect of the intraglottal vortices on the glottal flow waveform was explored using flow-structure-interaction (FSI) modeling. These vortices form near the superior aspect of the vocal folds during the closing phase of the folds' vibration. The geometry of the vocal fold was based on the well-known M5 model. The model did not include a vocal tract to remove its inertance effect on the glottal flow. Material properties for the cover and body layers of the folds were set using curve fit to experimental data of tissue elasticity. A commercially available FSI solver was used to perform simulations at low and high values of subglottal input pressure. Validation of the FSI results showed a good agreement for the glottal flow and the vocal fold displacement data with measurements taken in the excised canine larynx model. The simulations result further support the hypothesis that intraglottal vortices can affect the glottal flow waveform, specifically its maximum flow declination rate (MFDR). It showed that MFDR occurs at the same phase when the highest intraglottal vortical strength and the negative pressure occur. It also showed that when MFDR occurs, the magnitude of the aerodynamic force acting on the glottal wall is greater than the elastic recoil force predicted in the tissue. These findings are significant because nearly all theoretical and computational models that study the vocal fold vibrations mechanism do not consider the intraglottal negative pressure caused by the vortices as an additional closing force acting on the folds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040475 | PMC |
http://dx.doi.org/10.1016/j.jvoice.2022.08.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!