Virotherapy: The next addition to the standard of care for glioblastoma?

Cancer Cell

Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.

Published: October 2022

AI Article Synopsis

  • A recent study published in Nature Medicine focused on a phase II trial that tested a modified herpes virus on patients with recurring glioblastoma, a type of brain tumor.
  • * The trial was single-arm, meaning all participants received the treatment without a comparison group.
  • * Results showed promise for using this virus-based therapy as a local treatment option for combating these aggressive tumors.*

Article Abstract

A recent Nature Medicine article reported a phase II single-arm trial assessing the efficacy of a triple-mutated, third-generation oncolytic herpes simplex virus type 1 in patients with recurrent or residual glioblastoma. We discuss the results and highlight the potential of locally administered virus-based therapies to fight these lethal tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2022.09.003DOI Listing

Publication Analysis

Top Keywords

virotherapy addition
4
addition standard
4
standard care
4
care glioblastoma?
4
glioblastoma? nature
4
nature medicine
4
medicine article
4
article reported
4
reported phase
4
phase single-arm
4

Similar Publications

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most frequent malignant brain tumor. We recently discovered that oncolytic herpes simplex virus engineered to disable tumor-intrinsic protein kinase R (PKR) signaling (oHSV-shPKR) could increase oHSV oncolysis and anti-tumor immune response. However, here we show that disabling tumor-intrinsic PKR signaling can also induce the activation of the indoleamine 2,3-dioxygenase (IDO) signaling pathway.

View Article and Find Full Text PDF

The sensitivity of human glioblastoma cells to virus-mediated oncolysis was investigated on five patient-derived cell lines. Primary glioblastoma cells (Gbl13n, Gbl16n, Gbl17n, Gbl25n, and Gbl27n) were infected with tenfold serial dilutions of the Leningrad-3 strain of the mumps virus, and virus reproduction and cytotoxicity were monitored for 96-120 h. Immortalized human non-tumor NKE cells were used as controls to determine the virus specificity.

View Article and Find Full Text PDF

Background: Oncolytic adenoviruses (OAds) are the most clinically tested viral vectors for solid tumors. However, most clinically tested "Armed" OAds show limited antitumor effects in patients with various solid tumors even with increased dosages and multiple injections. We developed a binary oncolytic/helper-dependent adenovirus system (CAdVEC), in which tumors are coinfected with an OAd and a non-replicating helper-dependent Ad (HDAd).

View Article and Find Full Text PDF

Durable antitumor response via an oncolytic virus encoding decoy-resistant IL-18.

J Immunother Cancer

December 2024

State Key Laboratory of Biotechnology, Medical School, Nanjing University, Nanjing, China

Article Synopsis
  • Interleukin-18 (IL-18) enhances immune responses, but its clinical use is limited by a decoy receptor; to overcome this, researchers developed a variant called DR18 that doesn't bind to IL-18 binding protein.
  • They tested this DR18 variant using an oncolytic adenovirus (oAdDR18) in mouse models of different tumors to see its effects on tumor growth and immune response.
  • Results showed that oAdDR18 led to significant tumor growth reduction and enhanced immune cell infiltration compared to other forms of IL-18, indicating strong potential for treating cancers and reducing metastasis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!