Humic acids (HAs) coupled with humic-reducing microorganisms (HRMs) can facilitate contaminants reduction. Molecular-weight (MW) of HA governs the chemical and HRMs behavior. However, MW of HAs with chemical characteristics linking to HRMs in different wastes composting have never been investigated. Results from the HPSEC-UV analysis showed that composting significantly increased weight-average molecular weight (M) of HA with a broad range from 675 Da to 27983 Da, and governing heterogeneous chemical characteristics. In proteinaceous composts, MW< 4000 Da of HAs were greatly related to alkyl and carbonyl, while MW> 20000 Da of HAs were presented by oxygen-nitrogenous functional groups, methyl, and alkyl groups. For cellulosic composts, MW< 1500 Da and 4000-10000 Da of HAs were characterized by aliphatic ethers and aromatic groups. MW> 20000 Da of HAs were constructed by phenols, methoxy and nitrogen functional groups. In lignocellulosic composts, MW> 20000 Da of HAs were only characterized by aromatic groups. Furthermore, seven groups of HRMs adapted to the heterogeneous chemical characteristics within HAs ranked by MW were recognized. Consequently, the possible routes that composting properties response to the connections of HRMs-chemical structures-MW of HAs in proteinaceous, cellulosic and lignocellulosic composts were constructed, respectively. Our results can help to develop the fine classification-oriented approach for recycling utilization of organic wastes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130049 | DOI Listing |
Sci Rep
December 2024
Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.
Phthalocyanine derivative nanostructures are highly organized organometallic structures that exhibit two-dimensional polymeric phthalocyanine frameworks. We analyze phthalocyanine using the Zagreb-type indices, which offer important insights into the topological characteristics of the molecular structure. Furthermore, we use Pearson correlation analysis to examine the degree of relationship between various structural features and qualities.
View Article and Find Full Text PDFSci Rep
December 2024
Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, 430070, China.
The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!