The immunosuppressive tumor microenvironment in hepatocellular carcinoma-current situation and outlook.

Mol Immunol

Nantong University Medical school, Affiliated Hospital of Nantong University, Xisi Road, No.20, Nantong, Jiangsu, China. Electronic address:

Published: November 2022

Hepatocellular carcinoma (HCC) is one of the most severe malignant tumors that threaten human health, and its incidence is still on the rise recently. In spite of the current emerging treatment strategies, the overall prognosis of liver cancer remains worrying. Currently, immunotherapy has become a new research-active spot. The emergence of immune checkpoints and targeted immune cell therapy can significantly improve the prognosis of HCC. To a large extent, the effect of this immunotherapy depends on the tumor immune microenvironment (TME), an intricate system in which cancer cells and other non-cancer cells display various interactions. Understanding the immunosuppressive situation of these cells, along with the malignant behavior of cancer cells, can assist us to design new therapeutic approaches against tumors. Therefore, it is necessary to clarify the TME of HCC for further improvement of clinical treatment. This review discussed the functions of several immunosuppressive cells and exosomes in the latest research progress of HCC, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) and tumor-associated neutrophils (TANs) interacted actively to facilitate tumor progression. It further describes the treatment methods targeting them and the potential that needs to be explored in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2022.09.010DOI Listing

Publication Analysis

Top Keywords

cancer cells
8
cells
6
immunosuppressive tumor
4
tumor microenvironment
4
microenvironment hepatocellular
4
hepatocellular carcinoma-current
4
carcinoma-current situation
4
situation outlook
4
outlook hepatocellular
4
hepatocellular carcinoma
4

Similar Publications

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!