Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photochemical reactions that widely occur in aquatic environments play important roles in carbon fate (e.g., carbon conversion and storage from organic matter) in ecosystems. Aquatic microbes and natural minerals further regulate carbon fate, but the processes and mechanisms remain largely unknown. Herein, the interaction between Escherichia coli and pyrite and its influence on the fate of carbon in water were investigated at the microscopic scale and molecular level. The results showed that saccharides and phenolic compounds in microbial extracellular polymeric substances helped remove pyrite surface oxides via electron transfer. After the removal of surface oxides on pyrite, the photochemical properties under visible-light irradiation were significantly decreased, such as reactive oxygen species and electron transfer capacity. Unlike the well-accepted theory of minerals protecting organic matter in the soil, the organic matter adsorbed on minerals preferred degradation due to the enhanced photochemical reactions in water. In contrast, the minerals transformed by microbes suppressed the decomposition of organic matter due to the passivation of the chemical structure and activity. These results highlight the significance of mineral chemical activity on organic matter regulated by microbes and provide insights into organic matter conversion in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.119164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!